CD4+CD25+ regulatory T cells can prevent and resolve intestinal inflammation in the murine T cell transfer model of colitis. Using Foxp3 as a marker of regulatory T cell activity, we now provide a comprehensive analysis of the in vivo distribution of Foxp3+CD4+CD25+ cells in wild-type mice, and during cure of experimental colitis. In both cases, Foxp3+CD4+CD25+ cells were found to accumulate in the colon and secondary lymphoid organs. Importantly, Foxp3+ cells were present at increased density in colon samples from patients with ulcerative colitis or Crohn’s disease, suggesting similarities in the behaviour of murine and human regulatory cells under inflammatory conditions. Cure of murine colitis was dependent on the presence of IL- 10, and IL-10-producing CD4+CD25+ T cells were enriched within the colon during cure of colitis and also under steady state conditions. Our data indicate that although CD4+CD25+ T cells expressing Foxp3 are present within both lymphoid organs and the colon, subsets of IL- 10-producing CD4+CD25+ T cells are present mainly within the intestinal lamina propria suggesting compartmentalization of the regulatory T cell response at effector sites.
An accurate blood‐based RAS mutation assay to determine eligibility of metastatic colorectal cancer (mCRC) patients for anti‐EGFR therapy would benefit clinical practice by better informing decisions to administer treatment independent of tissue availability. The objective of this study was to determine the level of concordance between plasma and tissue RAS mutation status in patients with mCRC to gauge whether blood‐based RAS mutation testing is a viable alternative to standard‐of‐care RAS tumor testing. RAS testing was performed on plasma samples from newly diagnosed metastatic patients, or from recurrent mCRC patients using the highly sensitive digital PCR technology, BEAMing (beads, emulsions, amplification, and magnetics), and compared with DNA sequencing data of respective FFPE (formalin‐fixed paraffin‐embedded) tumor samples. Discordant tissue RAS results were re‐examined by BEAMing, if possible. The prevalence of RAS mutations detected in plasma (51%) vs. tumor (53%) was similar, in accord with the known prevalence of RAS mutations observed in mCRC patient populations. The positive agreement between plasma and tumor RAS results was 90.4% (47/52), the negative agreement was 93.5% (43/46), and the overall agreement (concordance) was 91.8% (90/98). The high concordance of plasma and tissue results demonstrates that blood‐based RAS mutation testing is a viable alternative to tissue‐based RAS testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.