The asymmetric magnetization reversal in exchange biased Fe/MnF 2 involves coherent (Stoner-Wohlfarth) magnetization rotation into an intermediate, stable state perpendicular to the applied field. We provide here experimentally tested analytical conditions for the unambiguous observation of both longitudinal and transverse magnetization components using the magneto-optical Kerr effect. This provides a fast and powerful probe of coherent magnetization reversal as well as its chirality. Surprisingly, the sign and asymmetry of the transverse magnetization component of Fe/MnF 2 change with the angle between cooling and measurement fields.
The asymmetry of the magnetization reversal process in exchange biased Fe/FeF2 has been studied by magneto-optical Kerr effect. Qualitatively different transverse magnetization loops are observed for different directions of the cooling and the measuring field. These loops can be simulated by a simple calculation of the total energy density which includes the relevant magnetic anisotropies and coherent magnetization rotation only. Asymmetric magnetization reversal is shown to originate from the unidirectional anisotropy and may be observed if the external measuring field is not collinear with either the exchange bias or the easy axis of the antiferromagnetic epitaxial FeF2(110) layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.