Photoactivatable fluorophores provide the opportunity to switch fluorescence on exclusively in a selected area within a sample of interest at a precise interval of time. Such a level of spatiotemporal fluorescence control enables the implementation of imaging schemes to monitor dynamic events in real time and visualize structural features with nanometer resolution. These transformative imaging methods are contributing fundamental insights on diverse cellular processes with profound implications in biology and medicine. Current photoactivatable fluorophores, however, become emissive only after the activation event, preventing the acquisition of fluorescence images and, hence, the visualization of the sample prior to activation. We developed a family of photoactivatable fluorophores capable of interconverting between emissive states with spectrally resolved fluorescence, instead of switching from a nonemissive state to an emissive one. We demonstrated that our compounds allow the real-time monitoring of molecules diffusing across the cellular blastoderm of developing embryos as well as of polymer beads translocating along the intestinal tract of live nematodes. Additionally, they also permit the tracking of single molecules in the lysosomal compartments of live cells and the visualization of these organelles with nanometer resolution. Indeed, our photoactivatable fluorophores may evolve into invaluable analytical tools for the investigation of the fundamental factors regulating the functions and structures of cells at the molecular level.
Photoactivated localization microscopy (PALM) relies on fluorescence photoactivation and single-molecule localization to overcome optical diffraction and reconstruct images of biological samples with spatial resolution at the nanoscale. The implementation of this subdiffraction imaging method, however, requires fluorescent probes with photochemical and photophysical properties specifically engineered to enable the localization of single photoactivated molecules with nanometer precision. The synthetic versatility and outstanding photophysical properties of the borondipyrromethene (BODIPY) chromophore are ideally suited to satisfy these stringent requirements. Specifically, synthetic manipulations of the BODIPY scaffold can be invoked to install photolabile functional groups and photoactivate fluorescence under photochemical control. Additionally, targeting ligands can be incorporated in the resulting photoactivatable fluorophores (PAFs) to label selected subcellular components in live cells. Indeed, photoactivatable BODIPYs have already allowed the sub-diffraction imaging of diverse cellular substructures in live cells using PALM and can evolve into invaluable analytical probes for bioimaging applications.
Single-molecule localization microscopy (SMLM) strategies based on fluorescence photoactivation permit the imaging of live cells with subdiffraction resolution and the high-throughput tracking of individual biomolecules in their interior. They rely predominantly on genetically-encoded fluorescent proteins to label live cells selectively and allow the sequential single-molecule localization of sparse populations of photoactivated fluorophores. Synthetic counterparts to these photoresponsive proteins are limited to a few remarkable examples at the present stage, mostly because of the daunting challenges in engineering biocompatible molecular constructs with appropriate photochemical and photophysical properties for live-cell SMLM. Our laboratory developed a new family of synthetic photoactivatable fluorophores specifically designed for these imaging applications. They combine a borondipyrromethene (BODIPY) fluorophore and an ortho-nitrobenzyl (ONB) photocage in a single molecular skeleton. The photoinduced ONB cleavage extends electronic delocalization to shift bathochromically the BODIPY absorption and emission bands. As a result, these photochemical transformations can be exploited to switch fluorescence on in a spectral region compatible with bioimaging applications and allow the localization of the photochemical product at the single-molecule level. Furthermore, our compounds can be delivered and operated in the interior of live cells to enable the visualization of organelles with nanometer resolution and the intracellular tracking of single photoactivated molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.