Light is an important environmental factor that modulates acclimation strategies and defense responses in plants. We explored the functional role of the regulatory subunit B#g (B#g) of protein phosphatase 2A (PP2A) in light-dependent stress responses of Arabidopsis (Arabidopsis thaliana). The predominant form of PP2A consists of catalytic subunit C, scaffold subunit A, and highly variable regulatory subunit B, which determines the substrate specificity of PP2A holoenzymes. Mutant leaves of knockdown pp2a-b#g plants show disintegration of chloroplasts and premature yellowing conditionally under moderate light intensity. The cell-death phenotype is accompanied by the accumulation of hydrogen peroxide through a pathway that requires CONSTITUTIVE EXPRESSION OF PR GENES5 (CPR5). Moreover, the pp2a-b#g cpr5 double mutant additionally displays growth suppression and malformed trichomes. Similar to cpr5, the pp2a-b#g mutant shows constitutive activation of both salicylic acid-and jasmonic acid-dependent defense pathways. In contrast to cpr5, however, pp2a-b#g leaves do not contain increased levels of salicylic acid or jasmonic acid. Rather, the constitutive defense response associates with hypomethylation of DNA and increased levels of methionine-salvage pathway components in pp2a-b#g leaves. We suggest that the specific B#g subunit of PP2A is functionally connected to CPR5 and operates in the basal repression of defense responses under low irradiance.
SummaryOxidative stress responses are influenced by growth day length, but little is known about how this occurs. A combined reverse genetics, metabolomics and proteomics approach was used to address this question in Arabidopsis thaliana.A catalase-deficient mutant (cat2), in which intracellular oxidative stress drives pathogenesis-related responses in a day length-dependent manner, was crossed with a knockdown mutant for a specific type 2A protein phosphatase subunit (pp2a-b′c). In long days (LD), the pp2a-b′c mutation reinforced cat2-triggered pathogenesis responses.In short days (SD), conditions in which pathogenesis-related responses were not activated in cat2, the additional presence of the pp2a-b′c mutation allowed lesion formation, PATHOGENESIS-RELATED GENE1 (PR1) induction, salicylic acid (SA) and phytoalexin accumulation and the establishment of metabolite profiles that were otherwise observed in cat2 only in LD. Lesion formation in cat2 pp2a-b′c in SD was genetically dependent on SA synthesis, and was associated with decreased PHYTOCHROME A transcripts. Phosphoproteomic analyses revealed that several potential protein targets accumulated in the double mutant, including recognized players in pathogenesis and key enzymes of primary metabolism.We conclude that the cat2 and pp2a-b′c mutations interact synergistically, and that PP2A-B ′c is an important player in controlling day length-dependent responses to intracellular oxidative stress, possibly through phytochrome-linked pathways.
Summary Correct chloroplast development and function require co‐ordinated expression of chloroplast and nuclear genes. This is achieved through chloroplast signals that modulate nuclear gene expression in accordance with the chloroplast's needs. Genetic evidence indicates that GUN1, a chloroplast‐localized pentatricopeptide repeat (PPR) protein with a C‐terminal Small MutS‐Related (SMR) domain, is involved in integrating multiple developmental and stress‐related signals in both young seedlings and adult leaves. Recently, GUN1 was found to interact physically with factors involved in chloroplast protein homeostasis, and with enzymes of tetrapyrrole biosynthesis in adult leaves that function in various retrograde signalling pathways. Here we show that following perturbation of chloroplast protein homeostasis: (i) by growth in lincomycin‐containing medium; or (ii) in mutants defective in either the FtsH protease complex (ftsh), plastid ribosome activity (prps21‐1 and prpl11‐1) or plastid protein import and folding (cphsc70‐1), GUN1 influences NEP‐dependent transcript accumulation during cotyledon greening and also intervenes in chloroplast protein import.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.