During approximately 80% of its growing season, lowland flooded irrigated rice ecosystems in southern Brazil are kept within a 5–10-cm water layer. These anaerobic conditions have an influence on the partitioning of the energy and water balance components. Furthermore, this cropping system differs substantially from any other upland nonirrigated or irrigated crop ecosystems. In this study, daily, seasonal, and annual dynamics of the energy and water balance components were analyzed over a paddy rice farm in a subtropical location in southern Brazil using eddy covariance measurements. In this region, rice is grown once a year in low wetlands while the ground is kept fallow during the remaining of the year. Results show that the energy budget residual corresponded to up to 20% of the net radiation during the rice-growing season and around 10% for the remainder of the year (fallow). The energy and water balance analysis also showed that because of the high water table in the region, soil was near saturation most of the time, and latent heat flux dominated over sensible heat flux by up to one order of magnitude in some cases. The estimate of evapotranspiration ET using the crop coefficient multiplied by the reference evapotranspiration KcETo and the Penman–Monteith equation ETPM, describing the canopy resistance through leaf area index (LAI) obtained by remote sensing, represent well the measured evapotranspiration, mainly in the fallow periods. Therefore, using a specific crop parameter like LAI and crop height can be an easy and interesting alternative to estimate ET in vegetated lowland areas.
Abstract.A new formulation for the turbulence dissipation rate ε occurring in meandering conditions has been presented. The derivation consists of a MacLaurin series expansion of a lateral dispersion parameter that represents cases in which turbulence and oscillatory movements associated to the meandering events coexist. The new formulation presents the identical physical premises contained in the classical and largely used one, but the new formulation derived from meandering situations is expressed in terms of the loop parameter m that controls the absolute value of the negative lobe in the meandering autocorrelation function. Therefore, the m magnitude regulates the turbulence dissipation rate. This dissipation rate decreases for cases in which turbulence and low frequency horizontal wind oscillations coexist and increases for a fully developed turbulence. Furthermore, a statistical comparison to observed concentration data shows that the alternative relation for the turbulent dissipation rate occurring in situations of meandering enhanced dispersion is suitable for applications in Lagrangian Stochastic dispersion models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.