Ageing is a major risk factor for many neurological pathologies, but its mechanisms remain unclear. Unlike other tissues, the parenchyma of the central nervous system (CNS) lacks lymphatic vasculature and waste products are removed partly through a paravascular route. (Re)discovery and characterization of meningeal lymphatic vessels has prompted an assessment of their role in waste clearance from the CNS. Here we show that meningeal lymphatic vessels drain macromolecules from the CNS (cerebrospinal and interstitial fluids) into the cervical lymph nodes in mice. Impairment of meningeal lymphatic function slows paravascular influx of macromolecules into the brain and efflux of macromolecules from the interstitial fluid, and induces cognitive impairment in mice. Treatment of aged mice with vascular endothelial growth factor C enhances meningeal lymphatic drainage of macromolecules from the cerebrospinal fluid, improving brain perfusion and learning and memory performance. Disruption of meningeal lymphatic vessels in transgenic mouse models of Alzheimer's disease promotes amyloid-β deposition in the meninges, which resembles human meningeal pathology, and aggravates parenchymal amyloid-β accumulation. Meningeal lymphatic dysfunction may be an aggravating factor in Alzheimer's disease pathology and in age-associated cognitive decline. Thus, augmentation of meningeal lymphatic function might be a promising therapeutic target for preventing or delaying age-associated neurological diseases.
Spectacular examples of cooperative behavior emerge among a variety of animals and may serve critical roles in fitness [1, 2]. However, the rules governing such behavior have been difficult to elucidate [2]. Drosophila larvae are known to socially aggregate [3, 4] and use vision, mechanosensation, and gustation to recognize each other [5-8]. We describe here a model experimental system of cooperative behavior involving Drosophila larvae. While foraging in liquid food, larvae are observed to align themselves and coordinate their movements in order to drag a common air cavity and dig deeper. Large-scale cooperation is required to maintain contiguous air contact across the posterior breathing spiracles. On the basis of a directed genetic screen we find that vision plays a key role in cluster dynamics. Our experiments show that blind larvae form fewer clusters and dig less efficiently than wild-type and that socially isolated larvae behave as if they were blind. Furthermore, we observed that blind and socially isolated larvae do not integrate effectively into wild-type clusters. Behavioral data indicate that vision and social experience are required to coordinate precise movements between pairs of larvae, therefore increasing the degree of cooperativity within a cluster. Hence, we hypothesize that vision and social experience allow Drosophila larvae to assemble cooperative digging groups leading to more effective feeding and potential evasion of predators. Most importantly, these results indicate that control over membership of such a cooperative group can be regulated.
Glioblastoma (GBM), a highly aggressive form of brain tumor, is a disease marked by extensive invasion into the surrounding brain. Interstitial fluid flow (IFF), or the movement of fluid within the spaces between cells, has been linked to increased invasion of GBM cells. Better characterization of IFF could elucidate underlying mechanisms driving this invasion in vivo . Here, we develop a technique to non-invasively measure interstitial flow velocities in the glioma microenvironment of mice using dynamic contrast-enhanced magnetic resonance imaging (MRI), a common clinical technique. Using our in vitro model as a phantom “tumor” system and in silico models of velocity vector fields, we show we can measure average velocities and accurately reconstruct velocity directions. With our combined MR and analysis method, we show that velocity magnitudes are similar across four human GBM cell line xenograft models and the direction of fluid flow is heterogeneous within and around the tumors, and not always in the outward direction. These values were not linked to the tumor size. Finally, we compare our flow velocity magnitudes and the direction of flow to a classical marker of vessel leakage and bulk fluid drainage, Evans blue. With these data, we validate its use as a marker of high and low IFF rates and IFF in the outward direction from the tumor border in implanted glioma models. These methods show, for the first time, the nature of interstitial fluid flow in models of glioma using a technique that is translatable to clinical and preclinical models currently using contrast-enhanced MRI.
To survive, animals must convert sensory information into appropriate behaviours1,2. Vision is a common sense for locating ethologically relevant stimuli and guiding motor responses3–5. How circuitry converts object location in retinal coordinates to movement direction in body coordinates remains largely unknown. Here we show through behaviour, physiology, anatomy and connectomics in Drosophila that visuomotor transformation occurs by conversion of topographic maps formed by the dendrites of feature-detecting visual projection neurons (VPNs)6,7 into synaptic weight gradients of VPN outputs onto central brain neurons. We demonstrate how this gradient motif transforms the anteroposterior location of a visual looming stimulus into the fly’s directional escape. Specifically, we discover that two neurons postsynaptic to a looming-responsive VPN type promote opposite takeoff directions. Opposite synaptic weight gradients onto these neurons from looming VPNs in different visual field regions convert localized looming threats into correctly oriented escapes. For a second looming-responsive VPN type, we demonstrate graded responses along the dorsoventral axis. We show that this synaptic gradient motif generalizes across all 20 primary VPN cell types and most often arises without VPN axon topography. Synaptic gradients may thus be a general mechanism for conveying spatial features of sensory information into directed motor outputs.
Highlights d Rh6-PR/lOLP pathway in the visual system controls fruit fly larvae social behavior d Rh6-PR/lOLP pathway represents a movement-detecting module d Proper development of Rh6-PR/lOLP pathway requires exposure to light and other larvae d Experience-dependent changes occur pre-and postsynaptically in Rh6-PR/lOLP pathway
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.