ObjectiveThis article compares various imaging aspects of magnetic resonance (MR) and computed tomography (CT) of heterotopic ossification (HO) in the pelvic soft tissues in paraplegic patients. Our aim is to highlight the benefits of integrating MR and CT imaging in the diagnosis of immature HO, which may be challenging with MR images alone.MethodsParaplegic patients examined on the same day by contrast-enhanced 0.4-T pelvic MR and unenhanced CT for pressure-sore-related infections were selected. MR imaging was performed on a Hitachi-Aperto 0.4 T; the Open Magnet served as a more favourable configuration for the required limb positioning of these patients. CT images were attained on a six-slice Siemens-Somaton-Emotion.ResultsMR images of HO differ according to the degree of bone maturity. The more immature the HO process, the more heterogeneous is the signal, characterised mostly by focal iso-hypointensity on T1-weighted images and hyperintensity on T2-weighted/short TI inversion recovery (STIR). These characteristics correlate to different CT patterns.ConclusionsMR and CT features of pelvic HO in paralysed patients were reviewed with a focus on the different aspects associated with the degree of ossification. Based solely on the MR findings, immature heterotopic ossification may be difficult to differentiate from other soft tissue pelvic lesions.Teaching points• The pelvis and hip are common locations of heterotopic ossifications (HO), often occurring in paraplegic patients.• With respect to HO, MR imaging allows for a confident diagnosis in mature ossified lesions only. The MR aspect of immature ossification may be confused with other pathologies.• Plain radiographs and CT may show various phases of ossification: amorphous calcification, immature and mature ossification.• Integrating MR with CT can help recognise HO foci and differentiate them from infections and other soft tissue lesions.
Introduction Elbow bony stability relies primarily on the high anatomic congruency between the humeral trochlea and the ulnar greater sigmoid notch. No practical tools are available to distinguish different morphotypes of the proximal ulna and herewith predict elbow stability. The aim of this study was to assess inter-observer reproducibility, evaluate diagnostic performance and determine responsiveness to change after simulated coronoid process fracture for three novel elbow radiographic indexes. Methods Ten fresh-frozen cadaver specimens of upper limbs from human donors were available for this study. Three primary indexes were defined, as well as two derived angles: Trochlear Depth Index (TDI); Posterior Coverage Index (PCI); Anterior Coverage Index (ACI); radiographic coverage angle (RCA); olecranon–diaphisary angle (ODA). Each index was first measured on standardized lateral radiographs and subsequently by direct measurement after open dissection. Finally, a type II coronoid fracture (Regan and Morrey classification) was created on each specimen and both radiographic and open measurements were repeated. All measurements were conducted by two orthopaedic surgeons and two dedicated musculoskeletal radiologists. Results All three indexes showed good or moderate inter-observer reliability and moderate accuracy and precision when compared to the gold standard (open measurement). A significant change between the radiographic TDI and ACI before and after simulated coronoid fracture was observed [TDI: decrease from 0.45 ± 0.03 to 0.39 ± 0.08 (p = 0.035); ACI: decrease from 1.90 ± 0.17 to 1.58 ± 0.21 (p = 0.001)]. As expected, no significant changes were documented for the PCI. Based on these data, a predictive model was generated, able to identify coronoid fractures with a sensitivity of 80% and a specificity of 100%. Conclusion New, simple and easily reproducible radiological indexes to describe the congruency of the greater sigmoid notch have been proposed. TDI and ACI change significantly after a simulated coronoid fracture, indicating a good responsiveness of these parameters to a pathological condition. Furthermore, combining TDI and ACI in a regression model equation allowed to identify simulated fractures with high sensitivity and specificity. The newly proposed indexes are, therefore, promising tools to improve diagnostic accuracy of coronoid fractures and show potential to enhance perioperative diagnostic also in cases of elbow instability and stiffness. Level of evidence Basic science study. Clinical relevance The newly proposed indexes are promising tools to improve diagnostic accuracy of coronoid fractures as well as to enhance perioperative diagnostic for elbow instability and stiffness.
Introduction The coronoid process plays a key-role in preserving elbow stability. Currently, there are no radiographic indexes conceived to assess the intrinsic elbow stability and the joint congruency. The aim of this study is to present new radiological parameters, which will help assess the intrinsic stability of the ulnohumeral joint and to define normal values of these indexes in a normal, healthy population. Methods Four independent observers (two orthopaedic surgeons and two radiologists) selected lateral view X-rays of subjects with no history of upper limb disease or surgery. The following radiographic indexes were defined: trochlear depth index (TDI); anterior coverage index (ACI); posterior coverage index (PCI); olecranon–coronoid angle (OCA); radiographic coverage angle (RCA). Inter-observer and intra-observer reproducibility were assessed for each index. Results 126 subjects were included. Standardized lateral elbow radiographs (62 left and 64 right elbows) were obtained and analysed. The mean TDI was 0.46 ± 0.06 (0.3–1.6), the mean ACI was 2.0 ± 0.2 (1.6–3.1) and the mean PCI was 1.3 ± 0.1 (1.0–1.9). The mean RCA was 179.6 ± 8.3° (normalized RCA: 49.9 ± 2.3%) and the mean OCA was 24.6 ± 3.7°. The indexes had a high-grade of inter-observer and intra-observer reliability for each of the four observers. Significantly higher values were found for males for TDI, ACI, PCI and RCA. Conclusion The novel radiological parameters described are simple, reliable and easily reproducible. These features make them a promising tool for radiographic evaluation both for orthopaedic surgeons and for radiologists in the emergency department setting or during outpatient services. Level of evidence Basic Science Study (Case Series). Clinical relevance The novel radiological parameters described are reliable, easily reproducible and become handy for orthopaedic surgeons as well as radiologists in daily clinical practice.
Background: An elongation of the radial lateral collateral complex (R-LCL) can provoke symptomatic minor instability of the lateral elbow leading to lateral elbow pain. Biomechanical models investigating the effects of elongation and partial or complete lesions of the R-LCL on lateral elbow stability are lacking. Purpose: To evaluate how partial and complete R-LCL release affects radiocapitellar joint stability in a setting of controlled varus load and progressive soft tissue release. Study Design: Controlled laboratory study. Methods: Ten fresh-frozen cadaveric specimens were obtained and mounted on a custom-made support to control elbow flexion and extension and to allow for controlled varus loading. Stress tests were performed on all intact specimens under gravity load alone, a 0.5-kg load applied to the hand, and a 1-kg load applied to the hand. After load application, anteroposterior radiographs were obtained. The following release sequence was applied to all specimens: release of the anterior half of the common extensor origin, pie crusting of the R-LCL, and R-LCL release. After each release, stress tests and radiographs were performed. The varus joint angulation of the elbow (α) was measured by 2 examiners as the main outcome parameter. Results: Significant changes in α from the initial condition occurred after each release, and a significant effect of varus load on α was documented for all release steps. A significant effect of the releases on α could be documented for all identical varus load conditions. A linear regression model was generated to describe the effect of varus load on α. Conclusion: Varus loads simulating everyday activities produce changes in the varus joint angulation of the elbow already in the intact specimen, which are linearly dependent on the applied moment and persist after release of the lateral stabilizing structures. With progressive load, a pie crusting of the R-LCL is the minimal procedure able to provoke a significant change in the varus joint angulation, and a complete R-LCL release produces additional increase in the varus joint angulation in all testing conditions. Clinical Relevance: These findings confirm the role of the R-LCL as static lateral stabilizer, supporting a pathological model based on its insufficiency and culminating with a symptomatic minor instability of the lateral elbow.
The elbow is a complex joint whose biomechanical function is granted by the interplay and synergy of various anatomical structures. Articular stability is achieved by both static and dynamic constraints, which consist of osseous as well as soft-tissue components. Injuries determining instability frequently involve several of these structures. Therefore, accurate knowledge of regional anatomy and imaging findings is fundamental for a precise diagnosis and an appropriate clinical management of elbow instability. This review focuses particularly on the varied appearance of overuse-related elbow injuries at CT-arthrography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.