Estrogen receptor coregulator over-expression promotes carcinogenesis and/or progression of endocrine related-cancers in which steroid hormones are powerful mitogenic agents. Recent studies in our laboratory, as well as others, demonstrated that the estrogen receptor coregulator PELP1 is a proto-oncogene. PELP1 interactions with histone demethylase KDM1 play a critical role in its oncogenic functions and PELP1 is a prognostic indicator of decreased survival in breast cancer patients. However, the in vivo significance of PELP1 deregulation during initiation and progression of breast cancer remains unknown. We generated an inducible, mammary gland–specific PELP1-expressing transgenic (Tg) mouse (MMTVrtTA-TetOPELP1). We found more proliferation, extensive side branching and precocious differentiation in PELP1-overexpressing mammary glands than in control glands. Aged MMTVrtTA-TetOPELP1 bitransgenic mice had hyperplasia and preneoplastic changes as early as 12 weeks, and ER-positive mammary tumors occurred at a latency of 14–16 months. Mechanistic studies revealed that PELP1 deregulation altered expression of a number of known ER target genes involved in cellular proliferation (such as cyclin D1, CDKs) and morphogenesis (EGFR, MMPs) and such changes facilitated altered mammary gland morphogenesis and tumor progression. Further, PELP1 was hyper-phosphorylated at its CDK phosphorylation site, suggesting an autocrine loop involving the CDK–cyclin D1–PELP1 axis in promoting mammary tumorigenesis. Treatment of PELP1 Tg mice with a KDM1 inhibitor significantly reduced PELP1 driven hyper branching, reversed alterations in cyclin D1 expression levels and reduced CDK-driven PELP1 phosphorylation. These results further support the hypothesis that PELP1 deregulation has the potential to promote breast tumorigenesis in vivo and represent a novel model for future investigation into molecular mechanisms of PELP1-mediated tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.