Purpose: To predict individual survival times for neuroblastoma patients from gene expression data using the cancer survival prediction using automatic relevance determination (CASPAR) algorithm. Experimental Design: A first set of oligonucleotide microarray gene expression profiles comprising 256 neuroblastoma patients was generated. Then, CASPAR was combined with a leave-one-out cross-validation to predict individual times for both the whole cohort and subgroups of patients with unfavorable markers, including stage 4 disease (n = 67), unfavorable genetic alterations, intermediate-risk or high-risk stratification by the German neuroblastoma trial, and patients predicted as unfavorable by a recently described gene expression classifier (n = 83). Prediction accuracy of individual survival times was assessed by Kaplan-Meier analyses and time-dependent receiver operator characteristics curve analyses. Subsequently, classification results were validated in an independent cohort (n = 120). Results: CASPAR separated patients with divergent outcome in both the initial and the validation cohort [initial set, 5y-OS 0.94 F 0.04 (predicted long survival) versus 0.38 F 0.17 (predicted short survival), P < 0.0001; validation cohort, 5y-OS 0.94 F 0.07 (long) versus 0.40 F 0.13 (short), P < 0.0001]. Time-dependent receiver operator characteristics analyses showed that CASPAR-predicted individual survival times were highly accurate (initial set, mean area under the curve for first 10 years of overall survival prediction 0.92 F 0.04; validation set, 0.81 F 0.05). Furthermore, CASPAR significantly discriminated short (<5 years) from long survivors (>5 years) in subgroups of patients with unfavorable markers with the exception of MYCN-amplified patients (initial set). Confirmatory results with high significance were observed in the validation cohort [stage 4 disease (P = 0.0049), NB2004 intermediate-risk or high-risk stratification (P = 0.0017), and unfavorable gene expression prediction (P = 0.0017)]. Conclusions: CASPAR accurately forecasts individual survival times for neuroblastoma patients from gene expression data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.