VPT2+K spectroscopic constants and matrix elements of the transformed vibrational Hamiltonian of a polyatomic molecule with resonances using Van Vleck perturbation theory
Over the past decade, both experimentalists and theorists have worked to develop methods to describe pigment-protein coupling in photosynthetic light-harvesting complexes in order to understand the molecular basis of quantum coherence effects observed in photosynthesis. Here we present an improved strategy based on the combination of quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations and excited-state calculations to predict the spectral density of electronic-vibrational coupling. We study the water-soluble chlorophyll-binding protein (WSCP) reconstituted with Chl a or Chl b pigments as the system of interest and compare our work with data obtained by Pieper and co-workers from differential fluorescence line-narrowing spectra (Pieper et al. J. Phys. Chem. B 2011, 115 (14), 4042-4052). Our results demonstrate that the use of QM/MM MD simulations where the nuclear positions are still propagated at the classical level leads to a striking improvement of the predicted spectral densities in the middle- and high-frequency regions, where they nearly reach quantitative accuracy. This demonstrates that the so-called "geometry mismatch" problem related to the use of low-quality structures in QM calculations, not the quantum features of pigments high-frequency motions, causes the failure of previous studies relying on similar protocols. Thus, this work paves the way toward quantitative predictions of pigment-protein coupling and the comprehension of quantum coherence effects in photosynthesis.
The thylakoid membrane inside chloroplasts hosts the light-dependent reactions of photosynthesis. Its embedded protein complexes are responsible for light harvesting, excitation energy transfer, charge separation, and transport. In higher plants, when the illumination conditions vary, the membrane adapts its composition and nanoscale morphology, which is characterized by appressed and non-appressed regions known as grana and stroma lamellae, respectively. Here we investigate the nanophotonic regime of light propagation in chloroplasts of higher plants and identify novel mechanisms in the optical response of the thylakoid membrane. Our results indicate that the relative contributions of light scattering and absorption to the overall optical response of grana strongly depend on the concentration of the light-harvesting complexes. For the pigment concentrations typically found in chloroplasts, the two mechanisms have comparable strengths, and their relative value can be tuned by variations in the protein composition or in the granal diameter. Furthermore, we find that collective modes in ensembles of grana significantly increase light absorption at selected wavelengths, even in the presence of moderate biological disorder. Small variations in the granal separation or a large disorder can dismantle this collective response. We propose that chloroplasts use this mechanism as a strategy against dangerously high illumination conditions, triggering a transition to low-absorbing states. We conclude that the morphological separation of the thylakoid membrane in higher plants supports strong nanophotonic effects, which may be used by chloroplasts to regulate light absorption. This adaptive self-organization capability is of interest as a model for novel bioinspired optical materials for artificial photosynthesis, imaging, and sensing.
Recent advances in polarizable force fields have revealed that major reparameterization is necessary when the polarization energy is treated explicitly. This study is focused on the torsional parameters, which are crucial for the accurate description of conformational equilibria in biomolecules. In particular, attention is paid to the influence of polarization on the (i) transferability of dihedral terms between molecules, (ii) transferability between different environments, and (iii) additivity of dihedral energies. To this end, three polarizable force fields based on the induced point dipole model designed for use in AMBER are tested, including two recent ff02 reparameterizations. Attention is paid to the contributions due to short range interactions (1-2, 1-3, and 1-4) within the four atoms defining the dihedral angle. The results show that when short range 1-2 and 1-3 polarization interactions are omitted, as for instance in ff02, the 1-4 polarization contribution is rather small and unlikely to improve the description of the torsional energy. Conversely, when screened 1-2 and 1-3 interactions are included, the polarization contribution is sizeable and shows potential to improve the transferability of parameters between different molecules and environments as well as the additivity of dihedral terms. However, to reproduce intramolecular polarization effects accurately, further fine-tuning of the short range damping of polarization is necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.