Senescent cells observed in the area of chronic wounds have been proposed to affect wound healing. Therapeutic approaches against chronic wounds include, among others, the local application of living cell constructs (LCCs), containing fibroblasts and/or keratinocytes. Accordingly, the aim of the present work was to examine the effects of factors secreted by early passage neonatal fibroblasts and LCCs--in the form of a conditioned medium (CM)--on senescent adult dermal fibroblasts regarding functions related to the healing process, i.e., cell proliferation, alpha-smooth muscle actin and metalloproteinase expression, and collagen synthesis. Target cells were fibroblasts senescent either due to subsequent divisions (replicative senescence) or due to an exogenous stress (stress-induced premature senescence). No effect on the proliferation of senescent fibroblasts was observed, as expected. All CMs were found to inhibit overall collagen synthesis both in early passage and in senescent fibroblasts. The LCC-derived CM was found to be more potent than fibroblast-derived CMs and, furthermore, to inhibit alpha-smooth muscle actin expression. In conclusion, these results may indicate anti-contractile and anti-fibrotic activities of factor(s) secreted by neonatal skin fibroblasts, and more intensely by LCCs on adult donor-derived fibroblasts. These activities seem to persist during senescence of the target cells.
BackgroundMutations in the GCH1 gene are associated with childhood onset, dopa-responsive dystonia (DRD). Correct diagnosis of DRD is crucial, given the potential for complete recovery once treated with L-dopa. The majority of DRD associated mutations lie within the coding region of the GCH1 gene, but three additional single nucleotide sequence substitutions have been reported within the 5’ untranslated (5’UTR) region of the mRNA. The biologic significance of these 5’UTR GCH1 sequence substitutions has not been analyzed.Methodology/Principal FindingsLuciferase reporter assays, quantitative real time PCR and RNA decay assays, combined with bioinformatics, revealed a pathogenic 5’UTR GCH1 substitution. The +142C>T single nucleotide 5’UTR substitution that segregates with affected status in DRD patients, substantially attenuates translation without altering RNA expression levels or stability. The +142C>T substitution disrupts translation most likely by creating an upstream initiation start codon (uAUG) and an upstream open reading frame (uORF).Conclusions/SignificanceThis is the first GCH1 regulatory substitution reported to act at a post-transcriptional level, increasing the list of genetic diseases caused by abnormal translation and reaffirming the importance of investigating potential regulatory substitutions in genetic diseases.
Background: Mutations in the GCH1 gene are associated with childhood onset, dopa-responsive dystonia (DRD). Correct diagnosis of DRD is crucial, given the potential for complete recovery once treated with L-dopa. The majority of DRD associated mutations lie within the coding region of the GCH1 gene, but three additional single nucleotide sequence substitutions have been reported within the 5' untranslated (5'UTR) region of the mRNA. The biologic significance of these 5'UTR GCH1 sequence substitutions has not been analyzed.
Methodology/Principal Findings:Luciferase reporter assays, quantitative real time PCR and RNA decay assays, combined with bioinformatics, revealed a pathogenic 5'UTR GCH1 substitution. The +142C>T single nucleotide 5'UTR substitution that segregates with affected status in DRD patients, substantially attenuates translation without altering RNA expression levels or stability. The +142C>T substitution disrupts translation most likely by creating an upstream initiation start codon (uAUG) and an upstream open reading frame (uORF).Conclusions/Significance: This is the first GCH1 regulatory substitution reported to act at a post-transcriptional level, increasing the list of genetic diseases caused by abnormal translation and reaffirming the importance of investigating potential regulatory substitutions in genetic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.