Efficient and stable algorithms for the calculation of spectral quantities and correlation functions are some of the key tools in computational condensed matter physics. In this article we review basic properties and recent developments of Chebyshev expansion based algorithms and the Kernel Polynomial Method. Characterized by a resource consumption that scales linearly with the problem dimension these methods enjoyed growing popularity over the last decade and found broad application not only in physics. Representative examples from the fields of disordered systems, strongly correlated electrons, electron-phonon interaction, and quantum spin systems we discuss in detail. In addition, we illustrate how the Kernel Polynomial Method is successfully embedded into other numerical techniques, such as Cluster Perturbation Theory or Monte Carlo simulation.
a b s t r a c tWe discuss the numerical solution of the Schrödinger equation with a time-dependent Hamilton operator using commutator-free time-propagators. These propagators are constructed as products of exponentials of simple weighted sums of the Hamilton operator. Owing to their exponential form they strictly preserve the unitarity of time-propagation. The absence of commutators or other computationally involved operations allows for straightforward implementation and application also to large scale and sparse matrix problems. We explain the derivation of commutator-free exponential time-propagators in the context of the Magnus expansion, and provide optimized propagators up to order eight. An extensive theoretical error analysis is presented together with practical efficiency tests for different problems. Issues of practical implementation, in particular the use of the Krylov technique for the calculation of exponentials, are discussed. We demonstrate for two advanced examples, the hydrogen atom in an electric field and pumped systems of multiple interacting two-level systems or spins that this approach enables fast and accurate computations.
We propose a general numerical approach to open quantum systems with a coupling to bath degrees of freedom. The technique combines the methodology of polynomial expansions of spectral functions with the sparse grid concept from interpolation theory. Thereby we construct a Hilbert space of moderate dimension to represent the bath degrees of freedom, which allows us to perform highly accurate and efficient calculations of static, spectral, and dynamic quantities using standard exact diagonalization algorithms. The strength of the approach is demonstrated for the phase transition, critical behavior, and dissipative spin dynamics in the spin-boson model.
We study the quantum phase transition of the Dicke model in the classical oscillator limit, where it occurs already for finite spin length. In contrast to the classical spin limit, for which spin-oscillator entanglement diverges at the transition, entanglement in the classical oscillator limit remains small. We derive the quantum phase transition with identical critical behavior in the two classical limits and explain the differences with respect to quantum fluctuations around the mean-field ground state through an effective model for the oscillator degrees of freedom. With numerical data for the full quantum model we study convergence to the classical limits. We contrast the classical oscillator limit with the dual limit of a high frequency oscillator, where the spin degrees of freedom are described by the Lipkin-Meshkov-Glick model. An alternative limit can be defined for the Rabi case of spin length one-half, in which spin frequency renormalization replaces the quantum phase transition.
We establish the emergence of chaotic motion in optomechanical systems. Chaos appears at negative detuning for experimentally accessible values of the pump power and other system parameters. We describe the sequence of period-doubling bifurcations that leads to chaos and state the experimentally observable signatures in the optical spectrum. In addition to the semiclassical dynamics, we analyze the possibility of chaotic motion in the quantum regime. We find that quantum mechanics protects the optomechanical system against irregular dynamics, such that simple periodic orbits reappear and replace the classically chaotic motion. In this way observation of the dynamical signatures makes it possible to pin down the crossover from quantum to classical mechanics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.