This study investigated the prevalence of the intravertebral vacuum phenomenon (IVP) and osteonecroses in vertebral compression fractures (VCFs). We therefore performed an histological analysis of biopsies obtained from VCFs prior to balloon kyphoplasty. Computed tomography (CT) scans were reviewed regarding the presence of an IVP (i.e. cleft sign, Kümmell disease). We reviewed the data of 266 consecutive patients treated by balloon kyphoplasty in 501 procedures from 2002 to 2004. From 180 patients (68%) we obtained adequate bone tissue for histological evaluation. Biopsy specimens were analysed regarding the presence of osteoporosis, infection, malignancy and osteonecrosis. CT scans of all 180 patients were reviewed for presence of an IVP. Histological examination revealed 135 (75%) osteoporoses, 20 (11%) neoplasms, 12 (7%) trauma cases and 13 (7%) osteonecroses. An IVP was present in 12 (7%) patients. There was a significant association of osteonecrosis and IVP (P < 0.0001). Eleven of 12 patients with a vacuum phenomenon showed an osteonecrosis on histology, whereas 11 of 13 patients with osteonecrosis showed an IVP on CT. The IVP is a specific sign of osteonecrosis in vertebral compression fractures (sensitivity 85%, specificity 99%, positive predictive value 91%). Our findings strongly support the thesis that an IVP indicates local bone ischemia associated with a non-healing vertebral collapse and pseudarthrosis.
A biomechanical investigation on eight pairs of human cadaver proximal femurs was performed to evaluate the impact of a new augmentation method on the internal fixation of osteoporotic proximal femur fractures. The study focused on enhancing implant purchase to reduce the incidence of implant cut-out in osteoporotic bone. In a left-right comparison, a conventional hip screw fixation (control) was compared to the new cement augmentation method. After bone bed preparation through high pressure irrigation to remove fat, blood, and bone debris, the bones were augmented with low viscosity polymethylmethacrylate (PMMA) cement.Step-wise fatigue testing was performed by cyclically loading the femoral heads in a physiological manner, beginning at 1,500 N and increasing 500 N every 5,000 cycles to 4,000 N, and continuously monitoring head displacement. Failure was defined as >5.0 mm head displacement. The head displacement at 2,000 N was significantly smaller (p ¼ 0.018) for the augmented group as compared to the conventionally treated bones (0.09 AE 0.01 mm vs. 0.90 AE 0.32 mm; mean AE SEM). The displacement rate at the second load step was significantly higher (p ¼ 0.018) for the conventionally treated bones as compared to the augmented ones. All of the nonaugmented specimens failed during testing, where 50% of the augmented specimens did not fail. The promising results of these experiments suggest that this new standardized irrigation/augmentation method enhances the implant anchorage and offers a potential solution to the problem of implant cut-out in osteoporotic metaphyseal bone. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.