The Laser Ranging Interferometer (LRI) instrument on the Gravity Recovery and Climate Experiment (GRACE) Follow-On mission has provided the first laser interferometeric range measurements between remote spacecraft, separated by approximately 220 km. Autonomous controls that lock the laser frequency to a cavity reference and establish the 5 degree of freedom two-way laser link between remote spacecraft succeeded on the first attempt. Active beam pointing based on differential wavefront sensing compensates spacecraft attitude fluctuations. The LRI has operated continuously without breaks in phase tracking for more than 50 days, and has shown biased range measurements similar to the primary ranging instrument based on microwaves, but with much less noise at a level of 1 nm/ √ Hz at Fourier frequencies above 100 mHz.
The Lidar Emitter and Multi-species greenhouse gases Observation iNstrument (LEMON) is a novel Differential Absorption Lidar (DIAL) sensor concept for greenhouse gases and water vapor measurements from space. 1,2 It is based on a versatile transmitter allowing for addressing various absorption lines of different molecules. This highly flexible emitter design requires a universal frequency referencing scheme. Here we present a concept employing a 1 GHz frequency comb, which allows the absolute referencing over a spectral range from 0.95 μm to 1.15 μm. By using an intermediate frequency doubling stage, this allows for DIAL measurements on CO2, H2O/HDO, and CH4 in the 2 μm range. Absolute referencing is obtained by using a GPS disciplined oscillator as the common time base for frequency measurements. The concept of the LEMON Frequency Reference UnIT (FRUIT) is designed to match the requirements of the vibration loads associated with airborne operation to allow implementation on the airborne demonstrator for LEMON. In addition, the requirements for a future space development are considered in the design. For example, radiation critical items have been identified and radiation tested within the project and a compact wavemeter design has been implemented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.