The progress in autonomous driving is also due to the increased availability of vast amounts of training data for the underlying machine learning approaches. Machine learning systems are generally known to lack robustness, e.g., if the training data did rarely or not at all cover critical situations. The challenging task of corner case detection in video, which is also somehow related to unusual event or anomaly detection, aims at detecting these unusual situations, which could become critical, and to communicate this to the autonomous driving system (online use case). Such a system, however, could be also used in offline mode to screen vast amounts of data and select only the relevant situations for storing and (re)training machine learning algorithms. So far, the approaches for corner case detection have been limited to videos recorded from a fixed camera, mostly for security surveillance. In this paper, we provide a formal definition of a corner case and propose a system framework for both the online and the offline use case that can handle video signals from front cameras of a naturally moving vehicle and can output a corner case score. * Jan-Aike Bolte, Andreas Bär and Tim Fingscheidt are with the Institute for Communications Technology, Technische Universität Braunschweig,
The high amount of sensors required for autonomous driving poses enormous challenges on the capacity of automotive bus systems. There is a need to understand tradeoffs between bitrate and perception performance. In this paper, we compare the image compression standards JPEG, JPEG2000, and WebP to a modern encoder/decoder image compression approach based on generative adversarial networks (GANs). We evaluate both the pure compression performance using typical metrics such as peak signal-to-noise ratio (PSNR), structural similarity (SSIM) and others, but also the performance of a subsequent perception function, namely a semantic segmentation (characterized by the mean intersection over union (mIoU) measure). Not surprisingly, for all investigated compression methods, a higher bitrate means better results in all investigated quality metrics. Interestingly, however, we show that the semantic segmentation mIoU of the GAN autoencoder in the highly relevant low-bitrate regime (at 0.0625 bit/pixel) is better by 3.9 % absolute than JPEG2000, although the latter still is considerably better in terms of PSNR (5.91 dB difference). This effect can greatly be enlarged by training the semantic segmentation model with images originating from the decoder, so that the mIoU using the segmentation model trained by GAN reconstructions exceeds the use of the model trained with original images by almost 20 % absolute. We conclude that distributed perception in future autonomous driving will most probably not provide a solution to the automotive bus capacity bottleneck by using standard compression schemes such as JPEG2000, but requires modern coding approaches, with the GAN encoder/decoder method being a promising candidate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.