STAT1 functions as both a constitutive transcriptional regulator and, in response to cytokine stimulation of cells, as an inducible tyrosine-phosphorylated transcription factor. Here, we identify and characterize a non-transferable nuclear targeting sequence in the STAT1 DNA-binding domain. This conserved signal is critical for the interferon-g (IFN-g)-induced nuclear import of phosphorylated STAT1 dimers and requires adjacent positively charged and hydrophobic residues for functioning. Additionally, the constitutive nucleocytoplasmic shuttling of STAT1 in the absence of IFN-g stimulation is revealed. Nuclear import and export of unphosphorylated STAT1 are demonstrated to be sensitive towards wheat germ agglutinin and to occur independently of the import receptor p97. Lossof-function mutations of the dimer-speci®c import signal block nuclear entry of tyrosine-phosphorylated STAT1, which in turn also prevents induction of cytokine-inducible target genes. Nevertheless, nuclear import of unphosphorylated STAT1 continues and the STAT1-dependent constitutive expression of caspases and the tumor necrosis factor-a-mediated induction of apoptosis proceed unaltered. Thus, tyrosine-phosphorylated and unphosphorylated STAT1 molecules shuttle via independent pathways to distinct sets of target genes.
Signal transducer and activator of transcription (Stat) proteins are latent transcription factors that reside in the cytoplasm before activation. On cytokine-induced tyrosine phosphorylation, these molecules dimerize and accumulate transiently in the nucleus. No specific signals mediating these processes have been identified to date. In this report, we examine the nuclear export of Stat1. We find that treatment of cells with the export inhibitor leptomycin B does not affect steady-state localization of Stat1 but impedes nuclear export after IFN␥-induced nuclear accumulation. We identify a conserved leucinerich helical segment in the coiled-coil domain of Stat1, which is responsible for the efficient nuclear export of this protein. Mutation of two hallmark leucines within this segment greatly attenuate the back transport of Stat1 in the cytoplasm. When fused to a carrier protein, the Stat1 export sequence can mediate nuclear export after intranuclear microinjection. We show that prolonging the nuclear presence of Stat1 by inhibiting nuclear export reduces the transcriptional response to stimulation with IFN␥. These data suggest that Stats are actively exported from the nucleus via several separate pathways and link this activity to transcriptional activation.
The NH 2 terminus of Stat proteins forms a versatile protein interaction domain that is believed to use discrete surfaces to mediate oligomerization and tyrosine dephosphorylation of Stat dimers. Here we show for Stat1 and Stat5a/b that these interfaces overlap and need to be reassigned to an unrelated region of the Ndomain. Unexpectedly, our study showed for Stat1 that defective oligomerization of DNA-bound dimers was associated with prolonged interferon-induced nuclear accumulation. This uncoupling of DNA binding and nuclear retention was explained by the concomitant dephosphorylation deficiency that both Stat1 and Stat5a/b have in common and that for Stat1 was due to defective dephosphorylation by the phosphatase TC45. Furthermore, diminished N-domain-mediated oligomerization affected transcriptional activation by both Stat1 and Stat5a/b in a promoter-specific manner. DNA binding analysis indicated that oligomerization of Stats on DNA may be common, irrespective of the presence of multiple canonical binding sites. Accordingly, also transcription from promoters with only a single discernable ␥-activated sequence site was negatively effected by reduced tetramerization. Thus, these results indicate that defective oligomerization cannot generally be compensated for by enhanced tyrosine phosphorylation and prolonged nuclear accumulation. In addition, these data clarify the role of DNA binding in nuclear retention of Stat1.
STAT1 is an indispensable component of a heterotrimer (ISGF3) and a STAT1 homodimer (GAF) that function as transcription regulators in type 1 and type 2 interferon signaling, respectively. To investigate the importance of STAT1-cooperative DNA binding, we generated gene-targeted mice expressing cooperativity-deficient STAT1 with alanine substituted for Phe77. Neither ISGF3 nor GAF bound DNA cooperatively in the STAT1F77A mouse strain, but type 1 and type 2 interferon responses were affected differently. Type 2 interferon-mediated transcription and antibacterial immunity essentially disappeared owing to defective promoter recruitment of GAF. In contrast, STAT1 recruitment to ISGF3 binding sites and type 1 interferon-dependent responses, including antiviral protection, remained intact. We conclude that STAT1 cooperativity is essential for its biological activity and underlies the cellular responses to type 2, but not type 1 interferon.
The biological effects of cytokines are mediated by STAT proteins, a family of dimeric transcription factors. In order to elicit transcriptional activity, the STATs require activation by phosphorylation of a single tyrosine residue. Our experiments revealed that fully tyrosine-phosphorylated STAT dimers polymerize via Tyr(P)-Src homology 2 domain interactions and assemble into paracrystalline arrays in the nucleus of cytokinestimulated cells. Paracrystals are demonstrated to be dynamic reservoirs that protect STATs from dephosphorylation. Activated STAT3 forms such paracrystals in acute phase liver cells. Activated STAT1, in contrast, does not normally form paracrystals. By reversing the abilities of STAT1 and STAT3 to be sumoylated, we show that this is due to the unique ability of STAT1 among the STATs to conjugate to small ubiquitin-like modifier (SUMO). Sumoylation had one direct effect; it obstructed proximal tyrosine phosphorylation, which led to semiphosphorylated STAT dimers. These competed with their fully phosphorylated counterparts and interfered with their polymerization into paracrystals. Consequently, sumoylation, by preventing paracrystal formation, profoundly curtailed signal duration and reporter gene activation in response to cytokine stimulation of cells. The study thus identifies polymerization of activated STAT transcription factors as a positive regulatory mechanism in cytokine signaling. It provides a unifying explanation for the different subnuclear distributions of STAT transcription factors and reconciles the conflicting results as to the role of SUMO modification in STAT1 functioning. We present a generally applicable system in which protein solubility is maintained by a disproportionately small SUMOmodified fraction, whereby modification by SUMO partially prevents formation of polymerization interfaces, thus generating competitive polymerization inhibitors.STAT transcription factors comprise a structurally and functionally conserved family of proteins with indispensable roles in cytokine signaling (1). Cytokine binding to specific membrane receptors first activates receptor-associated JAK tyrosine kinases, which activate STAT proteins by phosphorylating a single C-terminal tyrosine (2). The STATs are nucleocytoplasmic shuttling homodimers that adopt antiparallel conformation involving N domain interactions (3, 4). Structural evidence indicates that such dimers are recruited to cytokine receptors for activation (4, 5). Upon activation, an additional dimer conformation (termed "parallel") emerges, which is stabilized by mutual SH2 2 domain-phosphotyrosyl interactions. In this conformation, the STATs possess DNA binding activity and evoke transcriptional responses to cytokines (6). The activated dimers can enter the nucleus, but dephosphorylation is required for their export (7). The time required for dephosphorylation causes a transient accumulation of the activated dimers in the nucleus (3). Here, for previously unknown reasons, STAT3 localizes to distinct nuclear bodies or particles (...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.