Human cortical thickness and surface area are genetically independent, emerge through different neurobiological events during development, and are sensitive to different clinical conditions. However, the relationship between changes in the two over time is unknown. Additionally, longitudinal studies have almost invariably been restricted to older adults, precluding the delineation of adult life span trajectories of change in cortical structure. In this longitudinal study, we investigated changes in cortical thickness, surface area, and volume after an average interval of 3.6 years in 207 well screened healthy adults aged 23-87 years. We hypothesized that the relationships among metrics are dynamic across the life span, that the primary contributor to cortical volume reductions in aging is cortical thinning, and that magnitude of change varies with age and region. Changes over time were seen in cortical area (mean annual percentage change [APC], Ϫ0.19), thickness (APC, Ϫ0.35), and volume (APC, Ϫ0.51) in most regions. Volume changes were primarily explained by changes in thickness rather than area. A negative relationship between change in thickness and surface area was found across several regions, where more thinning was associated with less decrease in area, and vice versa. Accelerating changes with increasing age was seen in temporal and occipital cortices. In contrast, decelerating changes were seen in prefrontal and anterior cingulate cortices. In conclusion, a dynamic relationship between cortical thickness and surface area changes exists throughout the adult life span. The mixture of accelerating and decelerating changes further demonstrates the importance of studying these metrics across the entire adult life span.
It is well established that human brain white matter structure changes with aging, but the timescale and spatial distribution of this change remain uncertain. Cross-sectional diffusion tensor imaging (DTI) studies indicate that, after a period of relative stability during adulthood, there is an accelerated decline in anisotropy and increase in diffusivity values during senescence; and, spatially, results have been discussed within the context of several anatomical frameworks. However, inferring trajectories of change from cross-sectional data can be challenging; and, as yet, there have been no longitudinal reports of the timescale and spatial distribution of age-related white matter change in healthy adults across the adult lifespan. In a longitudinal DTI study of 203 adults between 20 and 84 years of age, we used tract-based spatial statistics to characterize the pattern of annual change in fractional anisotropy, axial diffusivity, radial diffusivity, and mean diffusivity and examined whether there was an acceleration of change with age. We found extensive and overlapping significant annual decreases in fractional anisotropy, and increases in axial diffusivity, radial diffusivity, and mean diffusivity. Spatially, results were consistent with inferior-to-superior gradients of lesser-to-greater vulnerability. Annual change increased with age, particularly within superior regions, with age-related decline estimated to begin in the fifth decade. Charting white matter microstructural changes in healthy aging provides essential context to clinical studies, and future studies should compare age trajectories between healthy participants and at-risk populations and also explore the relationship between DTI rates of change and cognitive decline.
There is a growing realization that early life influences have lasting impact on brain function and structure. Recent research has demonstrated that genetic relationships in adults can be used to parcellate the cortex into regions of maximal shared genetic influence, and a major hypothesis is that genetically programmed neurodevelopmental events cause a lasting impact on the organization of the cerebral cortex observable decades later. Here we tested how developmental and lifespan changes in cortical thickness fit the underlying genetic organizational principles of cortical thickness in a longitudinal sample of 974 participants between 4.1 and 88.5 y of age with a total of 1,633 scans, including 773 scans from children below 12 y. Genetic clustering of cortical thickness was based on an independent dataset of 406 adult twins. Developmental and adult age-related changes in cortical thickness followed closely the genetic organization of the cerebral cortex, with change rates varying as a function of genetic similarity between regions. Cortical regions with overlapping genetic architecture showed correlated developmental and adult age change trajectories and vice versa for regions with low genetic overlap. Thus, effects of genes on regional variations in cortical thickness in middle age can be traced to regional differences in neurodevelopmental change rates and extrapolated to further adult aging-related cortical thinning. This finding suggests that genetic factors contribute to cortical changes through life and calls for a lifespan perspective in research aimed at identifying the genetic and environmental determinants of cortical development and aging.here is a growing realization that events during development impact brain and cognition throughout the entire lifespan (1). For instance, the major portion of the relationship between cortical thickness and IQ in old age can be explained by childhood IQ (2), and genotype may explain a substantial part of the lifetime stability in intelligence (3). Effects of genes on the organization of the cortex have been shown in adults (4-6), but it is unknown whether and how regional differences in cortical development correspond to these regional genetic subdivisions.Although consensus has not been reached for the exact trajectories, cortical thickness as measured by MRI appears to decrease in childhood (7-12). The exact foundation for this thinning is not known, as MRI provides merely representations of the underlying neurobiology, and available histological data cannot with certainty be used to guide interpretations of MRI results. Although speculative, apparent thickness decrease may be grounded in factors such as synaptic pruning and intracortical myelination, although the link between established synaptic processes (13-15) and cortical thickness has not been empirically confirmed. After childhood, cortical thinning continues throughout the remainder of the lifespan, speculated to reflect neuronal shrinkage and reductions in number of spines and synapses (16), although sim...
Neurodevelopmental origins of functional variation in older age are increasingly being acknowledged, but identification of how early factors impact human brain and cognition throughout life has remained challenging. Much focus has been on age-specific mechanisms affecting neural foundations of cognition and their change. In contrast to this approach, we tested whether cerebral correlates of general cognitive ability (GCA) in development could be extended to the rest of the lifespan, and whether early factors traceable to prenatal stages, such as birth weight and parental education, may exert continuous influences. We measured the area of the cerebral cortex in a longitudinal sample of 974 individuals aged 4-88 y (1,633 observations). An extensive cortical region was identified wherein area related positively to GCA in development. By tracking area of the cortical region identified in the child sample throughout the lifespan, we showed that the cortical change trajectories of higher and lower GCA groups were parallel through life, suggesting continued influences of early life factors. Birth weight and parental education obtained from the Norwegian Mother-Child Cohort study were identified as such early factors of possible lifelong influence. Support for a genetic component was obtained in a separate twin sample (Vietnam Era Twin Study of Aging), but birth weight in the child sample had an effect on cortical area also when controlling for possible genetic differences in terms of parental height. Our results provide novel evidence for stability in brain-cognition relationships throughout life, and indicate that early life factors impact brain and cognition for the entire life course. development | aging | cortical change I t is well-established that both brain and cognition change with age, and that although there are early gains, older age brings with it decrements in aspects of both (1, 2). Much focus has been on age-specific mechanisms of neural foundations of cognition and their change (3, 4). In contrast, neurodevelopmental origins of functional variation in older age are now increasingly being acknowledged (5-8), but identification of how early factors may impact human brain and cognition throughout the lifespan has remained challenging.General cognitive ability (GCA) is essential to human beings, relates to a multitude of health and social outcomes (9), and necessarily originates in characteristics of the central nervous system at all ages. Paradoxically, even though GCA is highly vulnerable to the influence of aging, there is a remarkable stability in individuals' GCA relative to their same-age peers (10, 11). It has even been shown that childhood GCA can account for GCA-cortical thickness associations in old age (12). Cortical thickness is known to decrease with age monotonously from relatively early childhood through the entire lifespan (6,13,14). This thinning, albeit continuous, signifies different neurobiological events at different stages of life (15, 16), and does not have a stable functional correla...
Objective: To examine the relationship between sleep quality and cortical and hippocampal volume and atrophy within a community-based sample, explore the influence of age on results, and assess the possible confounding effects of physical activity levels, body mass index (BMI), and blood pressure. Methods:In 147 community-dwelling adults (92 female; age 53.9 6 15.5 years), sleep quality was measured using the Pittsburgh Sleep Quality Index and correlated with cross-sectional measures of volume and longitudinal measures of atrophy derived from MRI scans separated by an average of 3.5 years. Exploratory post hoc analysis compared correlations between different age groups and included physical activity, BMI, and blood pressure as additional covariates.Results: Poor sleep quality was associated with reduced volume within the right superior frontal cortex in cross-sectional analyses, and an increased rate of atrophy within widespread frontal, temporal, and parietal regions in longitudinal analyses. Results were largely driven by correlations within adults over the age of 60, and could not be explained by variation in physical activity, BMI, or blood pressure. Sleep quality was not associated with hippocampal volume or atrophy. Conclusions:We found that longitudinal measures of cortical atrophy were widely correlated with sleep quality. Poor sleep quality may be a cause or a consequence of brain atrophy, and future studies examining the effect of interventions that improve sleep quality on rates of atrophy may hold key insights into the direction of this relationship. Poor sleep quality, characterized by difficulties in initiating or maintaining sleep or nonrestorative sleep, has been linked to cognitive deficits 1,2 and increased risk of Alzheimer disease and cognitive decline 3 within community-based samples. MRI is an ideal tool to address whether variations in brain structure underlie these relationships, and MRI studies have linked primary insomnia with reduced volume of the orbitofrontal cortex (OFC), 4,5 hippocampus, 6,7 and precuneus, 4 and increased volume of the rostral anterior cingulate. 5 Although few studies have explored the relationship between sleep and brain structure in healthy individuals, crosssectional correlations have been reported between the volume of the OFC and early-morning awakening 8 and daytime sleepiness. 9 Furthermore, reduction in non-REM (NREM) slow wave activity (SWA) in older adults has been associated with age-related decreases in gray matter density within the medial prefrontal cortex (mPFC).10 To our knowledge, no studies have assessed the relationship between sleep quality and longitudinal change in brain structure.We investigated the relationship between sleep quality and cross-sectional measurements of cortical and hippocampal volume as well as longitudinal measures of atrophy in communitydwelling adults. We expected that poor sleep quality would be associated with reduced volume and increased atrophy within the OFC and mPFC. Furthermore, we hypothesized that correla...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.