Blass, A., A game semantics for linear logic, Annals of Pure and Applied Logic 56 (1992) 183-220. We present a game (or dialogue) semantics in the style of Lorenzen (1959) for Girard's linear logic (1987). Lorenzen suggested that the (constructive) meaning of a proposition 91 should be specified by telling how to conduct a debate between a proponent P who asserts p and an opponent 0 who denies q. Thus propositions are interpreted as games, connectives (almost) as operations on games, and validity as existence of a winning strategy for P. (The qualifier 'almost' will be discussed later when more details have been presented.) We propose that the connectives of linear logic can be naturally interpreted as the operations on games introduced for entirely different purposes by Blass (1972). We show that affine logic, i.e., linear logic plus the rule of weakening, is sound for this interpretation. We also obtain a completeness theorem for the additive fragment of affine logic, but we show that completeness fails for the multiplicative fragment. On the other hand, for the multiplicative fragment, we obtain a simple characterization of game-semantical validity in terms of classical tautologies. An analysis of the failure of completeness for the multiplicative fragment leads to the conclusion that the game interpretation of the connective @ is weaker than the interpretation implicit in Girard's proof rules; we discuss the differences between the two interpretations and their relative advantages and disadvantages. Finally, we discuss how Godel's Dialectica interpretation (1958), which was connected to linear logic by de Paiva (1989) fits with game semantics.
We prove the consistency, relative to ZFC, of each of the following two (mutually contradictory) statements. (A) Every two non-principal ultrafilters on o have a common image via a finite-to-one function. (B) Simple &,-points and simple &+-points both exist. These results, proved by the second author, answer questions of the first author and P. Nyikos, who had obtained numerous consequences of (A) and (B), respectively. In the models we construct, the bounding number is K,, while the dominating number, the splitting number, and the cardinality of the continuum are HZ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.