Two-dimensional halide perovskite nanoplatelets (NPLs) have exceptional light-emitting properties, including wide spectral tunability, ultrafast radiative decays, high quantum yields (QY), and oriented emission. To realize efficient devices, it is imperative to understand how exciton 2 transport progresses in NPL thin films. Due to the high binding energies of electron-hole pairs, excitons are generally considered the dominant species responsible for carrier transfer. We employ spatially and temporally resolved optical microscopy to map exciton diffusion in perovskite nanocrystal (NC) thin films between 15 °𝐶 and 50 °𝐶. At room temperature (RT), we find the diffusion length to be inversely correlated to the thickness of the nanocrystals (NCs). With increasing temperatures, exciton diffusion declines for all NC films, but at different rates. This leads to specific temperature turnover points, at which thinner NPLs exhibit higher diffusion lengths. We attribute this anomalous diffusion behavior to the coexistence of excitons and free electron hole-pairs inside the individual NCs within our temperature range. The organic ligand shell surrounding the NCs prevents charge transfer. Accordingly, any time an electron-hole pair spends in the unbound state reduces the FRET-mediated inter-NC transfer rates and consequently the overall diffusion. These results clarify how exciton diffusion progresses in strongly confined halide perovskite NC films, emphasizing critical considerations for optoelectronic devices.
In organic field-effect transistors, conductivity is achieved by electronically injected charges that form high-density accumulation layers. We report self-consistent calculations of Poisson's equation, carrier statistics, and the Drude permittivity of the carrier gas at the interface between semiconductors and insulators. The results show that the injected carriers efficiently screen local potentials. Additionally, the AC permittivity of the carriers reduces electrical fields particularly at frequencies of several THz. This dynamic screening may affect the formation of large polarons and the transient localization of carriers.
Semiconductor nanocrystals could replace conventional bulk materials completely in displays and light-emitting diodes. However, the organic ligands enabling their unique optical properties, prevent current flow in nanocrystal films, leaving energy transfer as the only means of injecting or extracting carriers. Here, we investigate exciton diffusion in halide perovskite superlattices - nearly perfect 3D nanocrystal assemblies. This high degree of order is not as crucial as the individual nanocrystal size, which affects transport differently depending on temperature. Up to 70 K, a confinement-induced splitting of excitonic energies, especially for the smallest nanocrystals, traps excitons into dark levels, suppressing diffusion. At intermediate temperatures, the distance of individual FRET steps corresponding to nanocrystal size enhances diffusion in the larger nanocrystals. This trend is reversed, as exciton dissociation and carrier trapping in less strongly confined nanocrystals become dominant up to room temperature. Our results reveal that transport must be factored strongly into nanocrystal design strategies for future optoelectronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.