The division property method is a technique to determine integral distinguishers on block ciphers. While the complexity of finding these distinguishers is higher, it has recently been shown that MILP and SAT solvers can efficiently find such distinguishers. In this paper, we provide a framework to automatically find those distinguishers which solely requires a description of the cryptographic primitive. We demonstrate that by finding integral distinguishers for 30 primitives with different design strategies. We provide several new or improved bit-based division property distinguishers for ChaCha, Chaskey, DES, GIFT, LBlock, Mantis, Qarma, RoadRunner, Salsa and SM4. Furthermore, we present an algorithm to find distinguishers with lower data complexity more efficiently.
Abstract. This work provides the first hardware implementations of PRIMATEs family of authenticated encryption algorithms. PRIMATEs are designed to be lightweight in hardware, hence we focus on designs for constrained devices. We provide several serial implementations, smallest of which requires only 1.2 kGE. Additionally, we present a variety of threshold implementations that range from 4.7 kGE to 10.3 kGE. The second part of this work presents a design of a lightweight PRIMATEs coprocessor. It is designed to conform versatile use of the core permutation, which allows implementation of the entire PRIMATEs family, with small differences in hardware. We implement HANUMAN-80 coprocessor, adapted for a 16-bit microcontroller from the Texas Instruments MSP430 family of microcontrollers. The entire HANUMAN-80 coprocessor is tested on a Spartan-6 (XC6SLX45) development board, where it occupies 72 slices (1.06% of available resources). ASIC synthesis yields a 2 kGE implementation using 90 nm library, achieves 33 kbits/sec throughput at 100 kHz operating frequency. It dissipates 0.53 µW of power on average, resulting in energy consumption of 15.60 pJ/bit.
In the past 20 years since their conception, boomerang attacks have become an important tool in the cryptanalysis of block ciphers. In the classical estimate of their success probability, assumptions are made about the independence of the underlying differential trails that are not well-founded. We underline the problems inherent in these independence assumptions by using them to prove that for any boomerang there exists a differential trail over the entire cipher with a higher probability than the boomerang.While cryptanalysts today have a clear understanding that the trails can be dependent, the focus of previous research has mostly gone into using these dependencies to improve attacks but little effort has been put into giving boomerangs and their success probabilities a stronger theoretical underpinning. With this publication, we provide such a formalization.We provide a framework which allows us to formulate and prove rigorous statements about the probabilities involved in boomerang attacks without relying on independence assumptions of the trails. Among these statements is a proof that two-round boomerangs on SPNs with differentially 4-uniform S-boxes always deviate from the classical probability estimate to the largest degree possible.We applied the results of this formalization to analyze the validity of some of the first boomerang attacks. We show that the boomerang constructed in the amplified boomerang attack on Serpent by Kelsey, Kohno, and Schneier has probability zero. For the rectangle attack on Serpent by Dunkelman, Biham, and Keller, we demonstrate that a minuscule fraction of only 2−43.4 of all differential trail combinations used in the original attack have a non-zero probability. In spite of this, the probability of the boomerang is in fact a little higher than the original estimate suggests as the non-zero trails have a vastly higher probability than the classical estimate predicts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.