The shells/coats of nuts and seeds are often very hard to crack. This is particularly the case with Macadamia seed coats, known to exhibit astoundingly high strength and toughness. We performed an extensive materials science characterization of the complex hierarchical structure of these coats, using light and scanning electron microscopy in 2D as well as microCT for 3D characterization. We differentiate nine hierarchical levels that characterize the structure ranging from the whole fruit on the macroscopic scale down to the molecular scale. From a biological viewpoint, understanding the hierarchical structure may elucidate why it is advantageous for these seed coats to be so difficult to break. From an engineering viewpoint, microstructure characterization is important for identifying features that contribute to the high strength and cracking resistance of these objects. This is essential for revealing the underlying structure-function-relationships. Such information will help us develop engineering materials and lightweight-structures with improved fracture and puncture resistance.
Natural materials often exhibit excellent mechanical properties. An example of outstanding impact resistance is the pummelo fruit (Citrus maxima) which can drop from heights of 10 m and more without showing significant outer damage. Our data suggest that this impact resistance is due to the hierarchical organization of the fruit peel, called pericarp. The project presented in the current paper aims at transferring structural features from the pummelo pericarp to engineering materials, in our case metal foams, produced by the investment casting process. The transfer necessitates a detailed structural and mechanical analysis of the biological model on the one hand, and the identification and development of adequate materials and processes on the other hand. Based on this analysis, engineering composite foam structures are developed and processed which show enhanced damping and impact properties. The modified investment casting process and the model alloy Bi57Sn43 proved to be excellent candidates to make these bio‐inspired structures. Mechanical testing of both the natural and the engineering structures has to consider the necessity to evaluate the impact of the different hierarchical features. Therefore, specimens of largely varying sizes have to be tested and size effects cannot be ignored, especially as the engineering structures might be upscaled in comparison with the natural role model. All in all, the present results are very promising: the basis for a transfer of bio‐inspired structural hierarchical levels has been set.
Fruit walls as well as nut and seed shells typically perform a multitude of functions. One of the biologically most important functions consists in the direct or indirect protection of the seeds from mechanical damage or other negative environmental influences. This qualifies such biological structures as role models for the development of new materials and components that protect commodities and/or persons from damage caused for example by impacts due to rough handling or crashes. We were able to show how the mechanical properties of metal foam based components can be improved by altering their structure on various hierarchical levels inspired by features and principles important for the impact and/or puncture resistance of the biological role models, rather than by tuning the properties of the bulk material. For this various investigation methods have been established which combine mechanical testing with different imaging methods, as well as with in situ and ex situ mechanical testing methods. Different structural hierarchies especially important for the mechanical deformation and failure behaviour of the biological role models, pomelo fruit (Citrus maxima) and Macadamia integrifolia, were identified. They were abstracted and transferred into corresponding structural principles and thus hierarchically structured bio-inspired metal foams have been designed. A production route for metal based bio-inspired structures by investment casting was successfully established. This allows the production of complex and reliable structures, by implementing and combining different hierarchical structural elements found in the biological concept generators, such as strut design and integration of fibres, as well as by minimising casting defects. To evaluate the structural effects, similar investigation methods and mechanical tests were applied to both the biological role models and the metallic foams. As a result an even deeper quantitative understanding of the form-structure-function relationship of the biological concept generators as well as the bio-inspired metal foams was achieved, on deeper hierarchical levels and overarching different levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.