This paper introduces CAAI, a novel cognitive architecture for artificial intelligence in cyber-physical production systems. The goal of the architecture is to reduce the implementation effort for the usage of artificial intelligence algorithms. The core of the CAAI is a cognitive module that processes the user’s declarative goals, selects suitable models and algorithms, and creates a configuration for the execution of a processing pipeline on a big data platform. Constant observation and evaluation against performance criteria assess the performance of pipelines for many and different use cases. Based on these evaluations, the pipelines are automatically adapted if necessary. The modular design with well-defined interfaces enables the reusability and extensibility of pipeline components. A big data platform implements this modular design supported by technologies such as Docker, Kubernetes, and Kafka for virtualization and orchestration of the individual components and their communication. The implementation of the architecture is evaluated using a real-world use case. The prototypic implementation is accessible on GitHub and contains a demonstration.
Cyber-physical production systems (CPPS) integrate physical and computational resources due to increasingly available sensors and processing power. This enables the usage of data, to create additional benefit, such as condition monitoring or optimization. These capabilities can lead to cognition, such that the system is able to adapt independently to changing circumstances by learning from additional sensors information. Developing a reference architecture for the design of CPPS and standardization of machines and software interfaces is crucial to enable compatibility of data usage between different machine models and vendors. This paper analysis existing reference architecture regarding their cognitive abilities, based on requirements that are derived from three different use cases. The results from the evaluation of the reference architectures, which include two instances that stem from the field of cognitive science, reveal a gap in the applicability of the architectures regarding the generalizability and the level of abstraction. While reference architectures from the field of automation are suitable to address use case specific requirements, and do not address the general requirements, especially w.r.t. adaptability, the examples from the field of cognitive science are well usable to reach a high level of adaption and cognition. It is desirable to merge advantages of both classes of architectures to address challenges in the field of CPPS in Industrie 4.0.
Trends in novel manufacturing systems lead to an increased level of data availability and smart usage of these data. Nowadays, many approaches are available to use the data, but because of an increased flexibility of the systems the interaction between machines and humans has become a challenge. Humans have to browse through a huge amount of data, need knowledge about the machine and underlying algorithms to interpret the results; they cannot use their known terms for communication, we call it the conceptual gap. The user should be enabled to communicate with the machine on a more abstract level and in a more natural way. Therefore, a natural language layer is introduced to provide users with a familiar interaction interface. Underlying layers contain knowledge about the domain, the machines and how data can be accessed and processed. This enables users' questions such as “Are there any anomalies in the system?” to be answered. Answers are provided in natural language and evaluated with a test set of 204 questions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.