Collectively coordinated ciliary activity propels the airway mucus, which lines the luminal surface of the vertebrate respiratory system, in cranial direction. Our contemporary understanding on how the quantitative characteristics of the metachronal wave field determines the resulting mucociliary transport is still limited, partly due to the sparse availability of quantitative observational data. We employed high-speed video reflection microscopy to image and quantitatively characterize the metachronal wave field as well as the mucociliary transport in excised bovine, porcine, ovine, lapine, turkey and ostrich samples. Image processing techniques were used to determine the ciliary beating frequency (CBF), the velocity and wavelength of the metachronal wave and the mucociliary transport velocity. The transport direction was found to strongly correlate with the mean wave propagation direction in all six species. The CBF yielded similar values (10–15 Hz) for all six species. Birds were found to exhibit higher transport speeds (130–260 $$\upmu$$ μ m/s) than mammals (20–80 $$\upmu$$ μ m/s). While the average transport direction significantly deviates from the tracheal long axis in mammals, no significant deviation was found in birds. The metachronal waves were found to propagate at about 4–8 times the speed of mucociliary transport in mammals, whereas in birds they propagate at about the transport speed. The mucociliary transport in birds is fast and roughly follows the TLA, whereas the transport is slower and proceeds along a left-handed spiral in mammals. The longer wavelengths and the lower ratio between the metachronal wave speed and the mucociliary transport speed provide evidence that the mucociliary clearance mechanism operates differently in birds than in mammals.
Background: Collectively coordinated ciliary activity constantly propels the airway surface liquid, which lines the luminal surface of the vertebrate respiratory system, in cranial direction – constituting mucociliary clearance, the primary defence mechanism of our airways. Our contemporary understanding on how the quantitative characteristics of the metachronal wave field determines the resulting mucociliary transport is still limited, which is partly due to the sparse availability of quantitative observational data. Methods: We employed high-speed video reflection contrast microscopy to simultaneously image and quantitatively characterize the metachronal wave field as well as the mucociliary transport in excised bovine, porcine, ovine, lapine, turkey and ostrich samples of the luminal tracheal wall. Advanced image processing techniques were used to determine the ciliary beating frequency (CBF), the velocity and the wavelength of the metachronal wave as well as the mucociliary transport velocity. Results: The mucociliary transport direction was found to strongly correlate with the mean wave propagation direction in all six species. The CBF yielded similar values (10−15 Hz) for all six species. Birds were found to exhibit considerably higher transport speeds (130−260 μm/s) than mammals (20−80 μm/s). While the average transport direction significantly deviates from the tracheal long axis (TLA) in mammals, no significant deviation from the TLA was found in birds. In comparison to mammals, longer metachronal wavelengths were found in birds. Finally, the metachronal waves were found to propagate at about 4−8 times the speed of mucociliary transport in mammals, whereas the metachronal waves propagate at about the speed of mucociliary transport in birds. Conclusions: The tracheal mucociliary clearance mechanism is based on a symplectic metachronsim in all examined species. The mucociliary transport in birds is fast and roughly follows the TLA, whereas the transport is slower and proceeds along a left-handed spiral in mammals. The longer wavelengths and the lower ratio between the metachronal wave speed and the mucociliary transport speed provide further evidence that the mucociliary clearance mechanism operates differently in birds than in mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.