Objective Chronic obstructive pulmonary disease (COPD) and coronary artery disease (CAD) are leading causes of global morbidity and mortality. There is a well-known comorbidity between COPD and CAD, which is only partly explained by smoking and other known common risk factors. In order to better understand the relationship between COPD and CAD, we analyzed myocardial perfusion, pulmonary function and novel cardiovascular biomarkers in patients with symptoms suggesting myocardial ischemia. Methods A total of 396 subjects from the Swedish Biomarkers and Genetics CardioPulmonary Physiology Study (BiG CaPPS) were included, all of whom had been referred to myocardial perfusion imaging due to suspected myocardial ischemia. Subjects performed myocardial perfusion imaging (MPI), pulmonary function tests (PFT) and analysis of 92 proteomic biomarkers, previously associated with cardiovascular disease. Linear regression was used to study the relationship between MPI and PFT results and proteomic biomarkers. Results Subjects with CAD (n = 159) had lower diffusing capacity (DLCO) than patients without CAD (6.64 versus 7.17 mmol/(min*kPa*l); p = 0.004) in models adjusted for common covariates such as smoking, but also diabetes and brain natriuretic peptide (BNP). The association remained significant after additional adjustment for forced expiratory volume in one second (FEV1) (p = 0.009). Subjects with CAD, compared with subjects without CAD, had higher total airway resistance (0.37 vs 0.36 kPa/(l/s); p = 0.036). Among 92 protein biomarkers, nine were associated with a combined diagnosis of CAD and airflow obstruction: VSIG2, KIM1, FGF-23, REN, XCL1, GIF, ADM, TRAIL-R2 and PRSS8. Significance Diffusing capacity for carbon monoxide is decreased in patients with CAD, independently of decreased FEV1, diabetes, and elevated BNP. Several cardiovascular biomarkers are associated with co-existent CAD and airflow obstruction, but none with airflow obstruction only. The current findings indicate that the interaction between CAD and lung function is complex, including mechanisms beyond the known association between CAD and reduced ventilation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.