More frequent and longer drought periods are predicted threatening agricultural yield. the capacity of soils to hold water is a highly important factor controlling drought stress intensity for plants. Biogenic amorphous silica (bASi) pools in soils are in the range of 0-6% and are suggested to help plants to resist drought. In agricultural soils, bASi pools declined to values of ~1% or lower) due to yearly crop harvest, decreasing water holding capacity of the soils. Here, we assessed the contribution of bASi to water holding capacity (WHC) of soil. Consequently, ASi was mixed at different rates (0, 1, 5 or 15%) with different soils. Afterwards, the retention curve of the soils was determined via Hyprop method. Here we show that bASi increases the soil water holding capacity substantially, by forming silica gels with a water content at saturation higher than 700%. An increase of bASi by 1% or 5% (weight) increased the water content at any water potential and plant available water increased by up to > 40% or > 60%, respectively. Our results suggest that soil management should be modified to increase bASi content, enhancing available water in soils and potentially decreasing drought stress for plants in terrestrial ecosystems.
Soils are considered the largest sink of microplastic (MP) in terrestrial ecosystems. However, little is known about the implications of MP on soil physical properties.We hypothesize that low wettability of MP induces soil water repellency, depending on MP content and size of MP and soil particles. We quantified wettability of mixtures of MP and sand. The sessile drop method (SDM) was applied to measure static contact angle (CA) of MP and glass beads at contents ranging from 0 to 100% (w/w). The results are extrapolated to varying combinations of MP and soil particle sizes based on specific surface area. Capillary rise was imaged with neutron radiography quantifying the effect of MP on dynamic CA, water imbibition, and water saturation distribution in sand. At 5% (w/w) MP content, static CA exhibited a steep increase to 80.2˚for MP 20-75 μm and 59.7˚for MP 75-125 μm. Dynamic CAs were approximately 40% lower than static CAs. Capillary rise experiments showed that MP 20-75 μm reduced water imbibition into sand columns (700-1,200 μm), with average dynamic CA of 40.3˚at 0.35% (w/w) MP content and 51.8˚at 1.05%. Decreased water saturation and increased tortuosity of flow paths were observed during imbibition peaking at 3.5% (w/w) local MP content. We conclude, in regions with high MP content. water infiltration and thus MP transport are hindered. Local low wettability induced by MP is expected to limit soil wettability and impede capillary rise.
<p>Soils are the largest sink of microplastic particles (MPP) in terrestrial ecosystems. However, there is little knowledge on the implication of MPP contaminating soils. In particular, we don&#8217;t know how MPP move and, on the other hand, how they affect soil hydraulic properties and soil moisture dynamics.</p><p>Among the expected effects of MPP on soil hydraulic properties is the likelihood that MPP enhances soil water repellency. This emerges from (1) the MPP surface chemical properties as well as (2) their surface physical properties like size and shape. Here, we tested mixtures of MPP and a model porous media. The Sessile Drop Method was applied and apparent contact angles were measured. We are able to show enlarged contact angles with rising concentrations of MPP. Already in relatively low concentrations of MPP the contact angels exhibit a steep increase and are rapidly reaching areas of super-hydrophobicity. Furthermore, we provide the physical explanation of the apparent contact angles resulting from the three-phase contact line between solid composite surfaces, water and air. The considered modes of a droplet lying on a surface are Wenzel, Cassie-Baxter and Young. The goal here was to differentiate between the involved surfaces building up the apparent contact angle and to pin down the impact of MPP in these systems.</p><p>Thinking about the implications of these results, an increased water repellency alters soil hydraulic properties towards less water content resulting in a shift in the water retention curve. Less water in soils especially at sites of high MPP concentrations leads to a limitation of degradation of MPP by hydrolysis. Additionally, microorganisms themselves and their enzymes cannot migrate in the liquid phase towards the MPP even elongating the process of natural purification.</p>
<p>Soils are considered the largest sink of microplastic particles (MP) in terrestrial ecosystems. However, there is little knowledge on the implications of MP contaminating soils. In particular, we do not know the extent of and conditions under which MP are transported through porous media and, if they are deposited, how they affect soil hydraulic properties and soil moisture dynamics. We hypothesize that: 1) hydrophobic MP enhance soil water repellency; 2) isolated MP are displaced and transported by the air-water interface; 3) clusters of MP impede water flow and are retained in air-filled pores.</p><p>We tested these hypotheses in mixtures of MP (&#181;m range) and sands (mm range) in a series of experiments. The Sessile Drop Method (SDM) was applied to measure the average contact angle (CA) of the mixtures for MP and model porous media in the same size range, ranging from 0 - 100 % MP content. Based on the specific surface and shape factor of MP and soil particles, the results are extrapolated to different MP and soil particle sizes. Capillary rise experiments were performed to measure the impact of MP on water infiltration. The applied MP contents of 0.35 % and 1.05 % reflect an average CA of 60&#176; and 90&#176; from the SDM extrapolation. Capillary rise of water and ethanol were carried out to estimate the apparent CA. Additionally and with the same MP content, we simultaneously imaged in three-dimensions the movement of deuterated water and MP during repeated drying / wetting cycles using X-Ray and Neutron tomography (at the beamline ICON, PSI). The different neutron attenuation coefficients of deuterated water and MP allows for estimating their distribution in the sand packing.</p><p>Already at MP contents of 5 % the CA measured with the SDM exhibited a steep increase and reached 59&#176; to 81&#176;, depending on the grain size of MP. The capillary rise experiments showed that MP reduce capillary rise. The apparent CA (43&#176; and 53&#176;) were smaller compared to the average CA from the SDM (60&#176; and 90&#176;), but the added MP increased air entrapment during capillary rise leading to a reduced saturation of the pore space (18 % and 16.5 %). Accumulation of MP at the advancing air-water interface was visible. Neutron and X-ray imaging showed at high resolution that regions with major MP content are water repellent and, are bypassed by water flow, and remain in air-filled pores.</p><p>Extrapolation of these results to soils suggests that in microregions with high MP contents, water infiltration is hindered. The low water content in these microregions might limit MP degradation due to reductions in: hydrolysis, coating of MP by e.g. dissolved organic substances, and colonization by microorganisms.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.