This paper presents a novel framework for the demystification of convolutional deep learning models for time-series analysis. This is a step toward making informed/explainable decisions in the domain of time series, powered by deep learning. There have been numerous efforts to increase the interpretability of image-centric deep neural network models, where the learned features are more intuitive to visualize. Visualization in the domain of time series is significantly challenging, as there is no direct interpretation of the filters and inputs compared with the imaging modality. In addition, a little or no concentration has been devoted to the development of such tools in the domain of time series in the past. TSViz provides possibilities to explore and analyze the network from different dimensions at different levels of abstraction, which includes the identification of the parts of the input that were responsible for a particular prediction (including per filter saliency), importance of the different filters present in the network, notion of diversity present in the network through filter clustering, understanding of the main sources of variation learned by the network through inverse optimization, and analysis of the network's robustness against adversarial noise. As a sanity check for the computed influence values, we demonstrate our results on pruning of neural networks based on the computed influence information. These representations allow the user to better understand the network so that the acceptability of these deep models for time-series analysis can be enhanced. This is extremely important in domains, such as finance, industry 4.0, self-driving cars, health care, and counter-terrorism, where reasons for reaching a particular prediction are equally important as the prediction itself. We assess the proposed framework for interpretability with a set of desirable properties essential for any method in this direction. Code
Propensity of skin diseases to manifest in a variety of forms, lack and maldistribution of qualified dermatologists, and exigency of timely and accurate diagnosis call for automated Computer-Aided Diagnosis (CAD). This study aims at extending previous works on CAD for dermatology by exploring the potential of Deep Learning to classify hundreds of skin diseases, improving classification performance, and utilizing disease taxonomy. We trained state-of-the-art Deep Neural Networks on two of the largest publicly available skin image datasets, namely DermNet and ISIC Archive, and also leveraged disease taxonomy, where available, to improve classification performance of these models. On DermNet we establish new state-of-the-art with 80% accuracy and 98% Area Under the Curve (AUC) for classification of 23 diseases. We also set precedence for classifying all 622 unique sub-classes in this dataset and achieved 67% accuracy and 98% AUC. On ISIC Archive we classified all 7 diseases with 93% average accuracy and 99% AUC. This study shows that Deep Learning has great potential to classify a vast array of skin diseases with near-human accuracy and far better reproducibility. It can have a promising role in practical real-time skin disease diagnosis by assisting physicians in large-scale screening using clinical or dermoscopic images.
Human-centric explainability of AI-based Decision Support Systems (DSS) using visual input modalities is directly related to reliability and practicality of such algorithms. An otherwise accurate and robust DSS might not enjoy trust of experts in critical application areas if it is not able to provide reasonable justification of its predictions. This paper introduces Concept Localization Maps (CLMs), which is a novel approach towards explainable image classifiers employed as DSS. CLMs extend Concept Activation Vectors (CAVs) by locating significant regions corresponding to a learned concept in the latent space of a trained image classifier. They provide qualitative and quantitative assurance of a classifier's ability to learn and focus on similar concepts important for humans during image recognition. To better understand the effectiveness of the proposed method, we generated a new synthetic dataset called Simple Concept DataBase (SCDB) that includes annotations for 10 distinguishable concepts, and made it publicly available. We evaluated our proposed method on SCDB as well as a real-world dataset called CelebA. We achieved localization recall of above 80% for most relevant concepts and average recall above 60% for all concepts using SE-ResNeXt-50 on SCDB. Our results on both datasets show great promise of CLMs for easing acceptance of DSS in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.