Abstract. Interactions between wind and trees control energy exchanges between the atmosphere and forest canopies. This energy exchange can lead to the widespread damage of trees, and wind is a key disturbance agent in many of the world's forests. However, most research on this topic has focused on conifer plantations, where risk management is economically important, rather than broadleaf forests, which dominate the forest carbon cycle. This study brings together tree motion time-series data to systematically evaluate the factors influencing tree responses to wind loading, including data from both broadleaf and coniferous trees in forests and open environments. We found that the two most descriptive features of tree motion were (a) the fundamental frequency, which is a measure of the speed at which a tree sways and is strongly related to tree height, and (b) the slope of the power spectrum, which is related to the efficiency of energy transfer from wind to trees. Intriguingly, the slope of the power spectrum was found to remain constant from medium to high wind speeds for all trees in this study. This suggests that, contrary to some predictions, damping or amplification mechanisms do not change dramatically at high wind speeds, and therefore wind damage risk is related, relatively simply, to wind speed. Conifers from forests were distinct from broadleaves in terms of their response to wind loading. Specifically, the fundamental frequency of forest conifers was related to their size according to the cantilever beam model (i.e. vertically distributed mass), whereas broadleaves were better approximated by the simple pendulum model (i.e. dominated by the crown). Forest conifers also had a steeper slope of the power spectrum. We interpret these finding as being strongly related to tree architecture; i.e. conifers generally have a simple shape due to their apical dominance, whereas broadleaves exhibit a much wider range of architectures with more dominant crowns.
Tree biomechanics studies using dynamic methods of analysis are reviewed. The emphasis in this review is on the biomechanics of open-grown trees typically found in urban areas, rather than trees in forests or plantations. The distinction is not based on species but on their form, because open-grown trees usually grow with considerable branch mass and the dynamic response in winds may be different to other tree forms. Methods of dynamic analysis applied to trees are reviewed. Simple tree models have been developed to understand tree dynamic responses, but these largely ignore the dynamics of branches. More complex models and finite element analyses are developing a multimodal approach to represent the dynamics of branches on trees. Results indicate that material properties play only a limited role in tree dynamics and it is the form and morphology of the tree and branches that can influence the dynamics of trees.
Over the last 30 years, researchers have begun to employ biomechanical principles to understand the stability of urban trees. This review concentrates on literature pertaining to trees in temperate urban landscapes, but also includes relevant work from other disciplines and climates as appropriate. The load-bearing capacity of a tree depends on its size and shape and the material properties of its wood. As the trunk and branches increase in diameter, their load-bearing capacity increases. Material properties (e.g., moduli of elasticity and rupture) describe intrinsic wood stiffness and strength, which influence deflection under load and load-bearing capacity, respectively. In wood, material properties vary in relation to a variety of factors, including the direction of loading, moisture content, and tree age. Wood decay reduces a tree’s load-bearing capacity. Although practitioners have developed guidelines to assess its effect, existing guidelines should be investigated, refined or rejected on the basis of rigorous scientific testing. Static load tests have been developed to address this question, as well as investigate the likelihood of uprooting, which accounts for up to 35% of tree failures. While much has been learned, many questions remain about the static load-bearing capacity of trees growing in urban landscapes.
Trees integrated into buildings and dense urban settings have become a trend in recent years worldwide. Without a thoughtful design, conflicts between green and gray infrastructures can take place in two aspects: (1) tree crown compete with living space above ground; (2) built underground environment, the other way round, affect tree’s health and security. Although various data about urban trees are collected by different professions for multiple purposes, the communication between them is still limited by unmatched scales and formats. To address this, tree information modeling (TIM) is proposed in this study, aiming at a standardized tree description system in a high level of detail (LoD). It serves as a platform to exchange data and share knowledge about tree growth models. From the perspective of architects and landscape designers, urban trees provide ecosystem services (ESS) not only through their overall biomass, shading, and cooling. They are also related to various branching forms and crown density, forming new layers of urban living space. So, detailed stem, branch and even root geometry is the key to interacting with humans, building structures and other facilities. It is illustrated in this paper how these detailed data are collected to initialize a TIM model with the help of multiple tools, how the topological geometry of stem and branches in TIM is interpreted into an L-system (a common syntax to describe tree geometries), allowing implementation of widely established tree simulations from other professions. In a vision, a TIM-assisted design workflow is framed, where trees are regularly monitored and simulated under boundary conditions to approach target parameters by design proposals.
As the intensity and frequency of strong storms increase, the potential for damage to urban trees also increases. So far, the risk of ultimate failure for partially uprooted trees and how they may recover their stability is not well understood. This study sets out to explore if and to what extent trees can regain anchoring strength after their root systems have been overloaded. In 2010, ten London Plane (Platanus × acerifolia) trees were subjected to destructive winching tests. Two trees were pulled to the ground while eight were loaded until primary anchorage failure occurred and were left standing with inclined stems. In 2013, two trees had failed and six were re-tested nondestructively. By 2018, another tree had failed, and we tested the remaining five again. Rotational stiffness was derived for all trials and served as a nondestructive proxy for anchoring strength (R² = 0.91). After eight years, one tree had regained its original strength, while four had reached between 71 and 82% of their initial rotational stiffness. However, three trees failed during the observation period. The results indicate that partially uprooted trees may re-establish stability over time, but some will not and may fail. In our small data set, it was not possible to identify visual criteria that could provide a reliable indication of tree stability recovery, but our data support the assumption that nondestructive pulling tests can be successfully employed to determine good vigorous candidates for retention after partial uprooting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.