We introduce the concept of a quantum pulse gate (QPG), a method for accessing the intrinsic broadband spectral mode structure of ultrafast quantum states of light. This mode structure can now be harnessed for applications in quantum information processing. We propose an implementation in a PPLN waveguide, based on spectrally engineered sum frequency generation (SFG). It allows us to pick well-defined spectral broadband modes from an ultrafast multi-mode state for interconversion to a broadband mode at another frequency. By pulse-shaping the bright SFG pump beam, different orthogonal broadband modes can be addressed individually and extracted with high fidelity.
We report the realization of a bright ultrafast type II parametric down-conversion source of twin beams free of any spatiotemporal correlations in a periodically poled KTiOPO4 (PP-KTP) waveguide. From a robust, single-pass setup it emits pulsed two-mode squeezed vacuum states: photon-number entangled pairs of single-mode pulses or, in terms of continuous variables quantum optics, pulsed Einstein-Podolsky-Rosen states in the telecom wavelength regime. We verify the single-mode character of our source by measuring Glauber correlation functions g(2) and demonstrate with a pump energy as low as 75 pJ per pump pulse a mean photon number of 2.5.
We demonstrate the implementation of a fiber-integrated spectrograph utilizing chromatic group velocity dispersion (GVD) in a single-mode fiber. By means of GVD we stretch an ultrafast pulse in time in order to spectrally resolve single photons in the time domain, detected by single-photon counting modules with very accurate temporal resolution. As a result, the spectrum of a very weak pulse is recovered from a precise time measurement with high signal-to-noise ratio. We demonstrate the potential of our technique by applying our scheme to analyzing the joint spectral intensity distribution of a parametric downconversion source at a telecommunication wavelength.
Full control over the spatio-temporal structure of quantum states of light is an important goal in quantum optics, to generate for instance singlemode quantum pulses or to encode information on multiple modes, enhancing channel capacities. Quantum light pulses feature an inherent, rich spectral broadband-mode structure. In recent years, exploring the use of integrated optics as well as source-engineering has led to a deep understanding of the pulse-mode structure of guided quantum states of light. In addition, several groups have started to investigate the manipulation of quantum states by means of singlephoton frequency conversion. In this paper we explore new routes towards complete control of the inherent pulse-modes of ultrafast pulsed quantum states by employing specifically designed nonlinear waveguides with adapted dispersion properties. Starting from our recently proposed quantum pulse gate (QPG) we further generalize the concept of spatio-spectral engineering for arbitrary χ (2)based quantum processes. We analyse the sum-frequency generation based QPG and introduce the difference-frequency generation based quantum pulse shaper (QPS). Together, these versatile and robust integrated optics devices allow for arbitrary manipulations of the pulse-mode structure of ultrafast pulsed quantum states. The QPG can be utilized to select an arbitrary pulse mode from a multimode input state, whereas the QPS enables the generation of specific pulse modes from an input wavepacket with Gaussian-shaped spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.