The electroweak phase transition broke the electroweak symmetry. Perturbative methods used to calculate observables related to this phase transition suffer from severe problems such as gauge dependence, infrared divergences, and a breakdown of perturbation theory. In this paper we develop robust perturbative tools for dealing with phase transitions. We argue that gauge and infrared problems are absent in a consistent power-counting. We calculate the finite temperature effective potential to two loops for general gauge-fixing parameters in a generic model. We demonstrate gauge invariance, and perform numerical calculations for the Standard Model in Fermi gauge.
In this paper I discuss how to consistently incorporate higher-order corrections to the bubble-nucleation rate at finite temperature. Doing so I examine the merits of different approaches, with the goal of reducing uncertainties for gravitational-wave calculations. To be specific, the region of applicability and accuracy of the derivative expansion is discussed. The derivative expansion is then compared to a numerical implementation of the Gelfand–Yaglom theorem. Both methods are applied to popular first-order phase transition models, like a loop-induced barrier and a SM-EFT tree-level barrier. The results of these calculations are presented in easy-to-use parametrizations that can directly be used in gravitational-wave calculations. In addition, higher-order corrections for models with multiple scalar fields, such as singlet/triplet extensions, are studied. Lastly, the main goal of this paper is to investigate the convergence and uncertainty of all calculation. Doing so I argue that current calculations for the Standard Model with a tree-level barrier are inaccurate.
We consider a class of minimal anomaly free U(1) extensions of the Standard Model with three generations of right-handed neutrinos and a complex scalar. Using electroweak precision constraints, new 13 TeV LHC data, and considering theoretical limitations such as perturbativity, we show that it is possible to constrain a wide class of models. By classifying these models with a single parameter, κ, we can put a model independent upper bound on the new U(1) gauge coupling g z . We find that the new dilepton data puts strong bounds on the parameters, especially in the mass region M Z 3 TeV.
We study the collider phenomenology of a neutral gauge boson Z arising in minimal but anomalous U(1) extensions of the Standard Model (SM). To retain gauge invariance of physical observables, we consider cancellation of gauge anomalies through the Green-Schwarz mechanism. We categorize a wide class of U(1) extensions in terms of the new U(1) charges of the left-handed quarks and leptons and the Higgs doublet. We derive constraints on some benchmark models using electroweak precision constraints and the latest 13 TeV LHC dilepton and dijet resonance search data. We calculate the decay rates of the exotic and rare one-loop Z decays to ZZ and Z-photon modes, which are the unique signatures of our framework. If observed, these decays could hint at anomaly cancellation through the Green-Schwarz mechanism. We also discuss the possible observation of such signatures at the LHC and at future ILC colliders.
The 2HDM possesses a neutral scalar interaction eigenstate whose tree-level properties coincide with the Standard Model (SM) Higgs boson. In light of the LHC Higgs data which suggests that the observed Higgs boson is SM-like, it follows that the mixing of the SM Higgs interaction eigenstate with the other neutral scalar interaction eigenstates of the 2HDM should be suppressed, corresponding to the so-called Higgs alignment limit. The exact Higgs alignment limit can arise naturally due to a global symmetry of the scalar potential. If this symmetry is softly broken, then the Higgs alignment limit becomes approximate (although still potentially consistent with the current LHC Higgs data). In this paper, we obtain the approximate Higgs alignment suggested by the LHC Higgs data as a consequence of a softly broken global symmetry of the Higgs Lagrangian. However, this can only be accomplished if the Yukawa sector of the theory is extended. We propose an extended 2HDM with vector-like top quark partners, where explicit mass terms in the top sector provide the source of the soft symmetry breaking of a generalized CP symmetry. In this way, we can realize approximate Higgs alignment without a significant fine-tuning of the model parameters. We then explore the implications of the current LHC bounds on vector-like top quark partners for the success of our proposed scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.