Understanding the resilience of aquatic ectothermic animals to climate warming has been hindered by the absence of experimental systems experiencing warming across relevant timescales (for example, decades). Here, we examine European perch (Perca fluviatilis, L.) from the Biotest enclosure, a unique coastal ecosystem that maintains natural thermal fluctuations but has been warmed by 5–10 °C by a nuclear power plant for over three decades. We show that Biotest perch grow faster and display thermally compensated resting cardiorespiratory functions compared with reference perch living at natural temperatures in adjacent waters. However, maximum cardiorespiratory capacities and heat tolerance limits exhibit limited or no thermal compensation when compared with acutely heated reference perch. We propose that while basal energy requirements and resting cardiorespiratory functions (floors) are thermally plastic, maximum capacities and upper critical heat limits (ceilings) are much less flexible and thus will limit the adaptive capacity of fishes in a warming climate.
A progressive inability of the cardiorespiratory system to maintain systemic oxygen supply at elevated temperatures has been suggested to reduce aerobic scope and the upper thermal limit of aquatic ectotherms. However, few studies have directly investigated the dependence of thermal limits on oxygen transport capacity. By manipulating oxygen availability (via environmental hyperoxia) and blood oxygen carrying capacity (via experimentally induced anaemia) in European perch (Perca fluviatilis Linneaus), we investigated the effects of oxygen transport capacity on aerobic scope and the critical thermal maximum (CT max ). Hyperoxia resulted in a twofold increase in aerobic scope at the control temperature of 23°C, but this did not translate to an elevated CT max in comparison with control fish (34.6± 0.1 versus 34.0±0.5°C, respectively). Anaemia (∼43% reduction in haemoglobin concentration) did not cause a reduction in aerobic scope or CT max (33.8±0.3°C) compared with control fish. Additionally, oxygen consumption rates of anaemic perch during thermal ramping increased in a similar exponential manner to that in control fish, highlighting that perch have an impressive capacity to compensate for a substantial reduction in blood oxygen carrying capacity. Taken together, these results indicate that oxygen limitation is not a universal mechanism determining the CT max of fishes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.