An important intermediate goal to evaluate our concept for the assumption-free determination of single-ion Gibbs transfer energies Δ G°(i, S →S ) is presented. We executed the crucial steps a) and b) of the methodology, described in Part I of this treatise, exemplarily for Ag and Cl with S being water and S being acetonitrile. The experiments showed that virtually all parts of the liquid junction potentials (LJPs) at both ends of a salt bridge cancel, if the bridge electrolyte is an "ideal" ionic liquid, that is, one with nearly identical diffusion of anion and cation. This ideality holds for [N ] [NTf ] in the pure IL, but also in water and acetonitrile solution. Electromotive force measurements of solvation cells between S and S demonstrated Nernstian behavior for Ag concentration cells and constant like cell potentials for solutions with five tested Ag counterions.
Described is a procedure for the thermodynamically rigorous, experimental determination of the Gibbs energy of transfer of single ions between solvents. The method is based on potential difference measurements between two electrochemical half cells with different solvents connected by an ideal ionic liquid salt bridge (ILSB). Discussed are the specific requirements for the IL with regard to the procedure, thus ensuring that the liquid junction potentials (LJP) at both ends of the ILSB are mostly canceled. The remaining parts of the LJPs can be determined by separate electromotive force measurements. No extra-thermodynamic assumptions are necessary for this procedure. The accuracy of the measurements depends, amongst others, on the ideality of the IL used, as shown in our companion paper Part II.
Utilizing the “ideal” ionic liquid salt bridge to measure Gibbs energies of transfer of silver ions between the solvents water, acetonitrile, propylene carbonate and dimethylformamide results in a consistent data set with a precision of 0.6 kJ mol−1 over 87 measurements in 10 half‐cells. This forms the basis for a coherent experimental thermodynamic framework of ion solvation chemistry. In addition, we define the solvent independent peabsH2normalO
‐ and the EabsH2normalO
values that account for the electronating potential of any redox system similar to the pHabsH2normalO
value of a medium that accounts for its protonating potential. This EabsH2normalO
scale is thermodynamically well‐defined enabling a straightforward comparison of the redox potentials (reducities) of all media with respect to the aqueous redox potential scale, hence unifying all conventional solvents′ redox potential scales. Thus, using the Gibbs energy of transfer of the silver ion published herein, one can convert and unify all hitherto published redox potentials measured, for example, against ferrocene, to the EabsH2normalO
scale.
Weakly coordinating anions (WCAs) with the difluorophosphato ligand (O2PF2) were the target of this study. Initial experiments were conducted towards the preparation of homoleptic aluminates of the well-studied [Al(OR)4](-)-type. The preparation of the initial target structure Li[Al(O2PF2)4] failed due to the remaining Lewis acidic character of the central aluminum atom. Instead, the formation of Li3[Al(O2PF2)6] and Al(O2PF2)3 was observed with hexacoordinate aluminum atoms and verified by NMR, IR and X-ray crystallography. A possible mechanism towards these compounds was postulated in the solvent induced dismutation of the tetracoordinate Li[Al(O2PF2)4]. A singly charged WCA was realized by the exchange of the central aluminum atom for boron. The [B(O2PF2)4](-) anion was prepared starting from BH3·S(CH3)2 and boron tribromide leading to the protic room temperature Ionic Liquid (IL) [H(S(CH3)2)][B(O2PF2)4] and the neat liquid Brønsted acid H[B(O2PF2)4], respectively, representing a significantly improved synthesis with regard to the first experiments of Dove et al. The basicity of the [B(O2PF2)4](-) anion and its WCA quality were investigated on the basis of the IR-spectroscopic NH-scale and the salt [H(N(Oct)3)][B(O2PF2)4] that places it better than all oxyanions and close to the carboranate based WCAs. A pathway to the solvent free pure Li[B(O2PF2)4] salt was established on a multi-gram scale with excellent purities enabling electrochemical applications (verified by NMR, IR, X-ray crystallography and cyclovoltammetry).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.