It is fundamentally important for many animal ecologists to quantify the costs of animal activities, although it is not straightforward to do so. The recording of triaxial acceleration by animal‐attached devices has been proposed as a way forward for this, with the specific suggestion that dynamic body acceleration (DBA) be used as a proxy for movement‐based power.
Dynamic body acceleration has now been validated frequently, both in the laboratory and in the field, although the literature still shows that some aspects of DBA theory and practice are misunderstood. Here, we examine the theory behind DBA and employ modelling approaches to assess factors that affect the link between DBA and energy expenditure, from the deployment of the tag, through to the calibration of DBA with energy use in laboratory and field settings.
Using data from a range of species and movement modes, we illustrate that vectorial and additive DBA metrics are proportional to each other. Either can be used as a proxy for energy and summed to estimate total energy expended over a given period, or divided by time to give a proxy for movement‐related metabolic power. Nonetheless, we highlight how the ability of DBA to predict metabolic rate declines as the contribution of non‐movement‐related factors, such as heat production, increases.
Overall, DBA seems to be a substantive proxy for movement‐based power but consideration of other movement‐related metrics, such as the static body acceleration and the rate of change of body pitch and roll, may enable researchers to refine movement‐based metabolic costs, particularly in animals where movement is not characterized by marked changes in body acceleration.
We measured esophageal pressures, respiratory flow rates, and expired O 2 and CO 2 in six adult bottlenose dolphins (Tursiops truncatus) during voluntary breaths and maximal (chuff ) respiratory efforts. The data were used to estimate the dynamic specific lung compliance (sC L ), the O 2 consumption rate (V O2 ) and CO 2 production rates (V CO2 ) during rest. ). The average estimated V O2 and V CO2 using our breath-by-breath respirometry system ranged from 0.857 to 1.185 l O 2 min −1 and 0.589 to 0.851 l CO 2 min, respectively, which is similar to previously published metabolic measurements from the same animals using conventional flow-through respirometry. In addition, our custom-made system allows us to approximate end tidal gas composition. Our measurements provide novel data for respiratory physiology in cetaceans, which may be important for clinical medicine and conservation efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.