Secretion of proteins is initiated by their uptake into the endoplasmic reticulum (ER), which possesses a proteolytic system able to degrade misfolded and nonassembled proteins. The ER degradation system was studied with yeast mutants defective in the breakdown of a mutated soluble vacuolar protein, carboxypeptidase yscY (CPY*). The ubiquitin-conjugating enzyme Ubc7p participated in the degradation process, which was mediated by the cytosolic 26S proteasome. It is likely that CPY* entered the ER, was glycosylated, and was then transported back out of the ER lumen to the cytoplasmic side of the organelle, where it was conjugated with ubiquitin and degraded.
The endoplasmic reticulum (ER) of the yeast Saccharomyces cerevisiae contains of proteolytic system able to selectively degrade misfolded lumenal secretory proteins. For examination of the components involved in this degradation process, mutants were isolated. They could be divided into four complementation groups. The mutations led to stabilization of two different substrates for this process. The mutant classes were called ‘der’ for ‘degradation in the ER’. DER1 was cloned by complementation of the der1–2 mutation. The DER1 gene codes for a novel, hydrophobic protein, that is localized to the ER. Deletion of DER1 abolished degradation of the substrate proteins. The function of the Der1 protein seems to be specifically required for the degradation process associated with the ER. The depletion of Der1 from cells causes neither detectable growth phenotypes nor a general accumulation of unfolded proteins in the ER. In DER1‐deleted cells, a substrate protein for ER degradation is retained in the ER by the same mechanism which also retains lumenal ER residents. This suggests that DER1 acts in a process that directly removes protein from the folding environment of the ER.
We have studied components of the endoplasmic reticulum (ER) proofreading and degradation system in the yeast Saccharomyces cerevisiae. Using a der3–1 mutant defective in the degradation of a mutated lumenal protein, carboxypeptidase yscY (CPY*), a gene was cloned which encodes a 64-kDa protein of the ER membrane. Der3p was found to be identical with Hrd1p, a protein identified to be necessary for degradation of HMG-CoA reductase. Der3p contains five putative transmembrane domains and a long hydrophilic C-terminal tail containing a RING-H2 finger domain which is oriented to the ER lumen. Deletion of DER3 leads to an accumulation of CPY* inside the ER due to a complete block of its degradation. In addition, a DER3 null mutant allele suppresses the temperature-dependent growth phenotype of a mutant carrying thesec61–2 allele. This is accompanied by the stabilization of the Sec61–2 mutant protein. In contrast, overproduction of Der3p is lethal in a sec61–2 strain at the permissive temperature of 25°C. A mutant Der3p lacking 114 amino acids of the lumenal tail including the RING-H2 finger domain is unable to mediate degradation of CPY* and Sec61–2p. We propose that Der3p acts prior to retrograde transport of ER membrane and lumenal proteins to the cytoplasm where they are subject to degradation via the ubiquitin-proteasome system. Interestingly, in ubc6-ubc7double mutants, CPY* accumulates in the ER, indicating the necessity of an intact cytoplasmic proteolysis machinery for retrograde transport of CPY*. Der3p might serve as a component programming the translocon for retrograde transport of ER proteins, or it might be involved in recognition through its lumenal RING-H2 motif of proteins of the ER that are destined for degradation.
The fate of a mutant form of each of the two yeast vacuolar enzymes proteinase yscA (PrA) and carboxypeptidase yscY (CPY) has been investigated. Both mutant proteins are rapidly degraded after entering the secretory pathway. Mutant PrA is deleted in 37 amino acids spanning the processing site region of the PrA pro‐peptide. The mutant enzyme shows no activity towards maturation of itself or other vacuolar hydrolases, a function of wild‐type PrA. Mutant CPY carries an Arg instead of a Gly residue in a highly conserved region, two positions distant from the active‐site Ser. In contrast to wild‐type CPY, the mutant form was quickly degraded by trypsin in vitro, indicating an altered structure. Using antisera specific for α‐1→6 and α‐1→3 outer‐chain mannose linkages, no Golgi‐specific carbohydrate modification could be detected on either mutant protein. Subcellular fractionation studies located both mutant enzymes in the endoplasmic reticulum. Degradation kinetics of both proteins show the same characteristics, indicating similar degradation pathways. The degradation process was shown to be independent of a functional sec18 gene product and takes place before Golgi‐specific carbohydrate modifications occur. The proteasome, the major proteolytic activity of the cytoplasm, is not involved in this degradation event. All degradation characteristics of the two mutant proteins are consistent with a degradation process within the endoplasmic reticulum (‘ER degradation’).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.