Analysis of accurate experimental and theoretical structure factors of diamond and silicon reveals that the contraction of the core shell due to covalent bond formation causes significant perturbations of the total charge density that cannot be ignored in precise charge density studies. We outline that the nature and origin of core contraction/expansion and core polarization phenomena can be analyzed by experimental studies employing an extended Hansen-Coppens multipolar model. Omission or insufficient treatment of these subatomic charge density phenomena might yield erroneous thermal displacement parameters and high residual densities in multipolar refinements. Our detailed studies therefore suggest that the refinement of contraction/expansion and population parameters of all atomic shells is essential to the precise reconstruction of electron density distributions by a multipolar model. Furthermore, our results imply that also the polarization of the inner shells needs to be adopted, especially in cases where second row or even heavier elements are involved in covalent bonding. These theoretical studies are supported by direct multipolar refinements of X-ray powder diffraction data of diamond obtained from a third-generation synchrotron-radiation source (SPring-8, BL02B2).
The iron(III) complexes of tetra amidato macrocyclic ligands (TAMLs) ([Fe{1-X1-2-X2C6H2-4,5-(NCOCMe2NCO)2CR2}(OH2)]- , 1: X1 = X2 = H, R2 = Me2 (a), R2 = (CH2)2 (b); X1 = X2 = Cl, R2 = F2 (c), etc.), which the proton is known to demetalate at pH < 3, are also subject to catalyzed demetalation by Brønsted acid buffer components at pH 4-9 such as H2PO4-, HSO3-, and CH3CO2H, HO2CCH2CO2-. Buffers based on pyridine (py) and tris(hydroxymethyl)aminomethane (TRIS) are catalytically inactive. Where reactions proceed, the products are demetalated TAMLs and iron species of variable composition. Pseudo-first-order rate constants for the demetalation (kobs) are linear functions of the acid concentrations, and the effective second-order rate constants k1,eff have a hyperbolic dependence on [H+] (k1,eff = a1[H+]/(b1+[H+]). The rate of demetalation of 1a in H2PO4-/HPO42- buffer is appreciable, but the kobs values for 1b and 1c are immeasurably low, showing that the rates are strongly affected by the CR2 or "tail" fragments, which are known to potently affect the TAML basicity. The reactivities of 1 depend insignificantly on the aromatic ring or "head" group of 1. The proposed mechanism involves precoordination of the acidic buffer species followed by hydrolysis. The demetalating abilities of buffer species depend on their structures and acidities. Thus, although pyridine-2-carboxylic (picolinic) acid catalyzes the demetalation, its 3- and 4-isomers (nicotinic and isonicotininc acids) are inactive. The difference is rationalized to result from the ability that only coordinated picolinic acid has to deliver a proton to an amidato nitrogen in an intramolecular manner. The reaction order in picolinic acid equals one for 1a and two for 1b. For 1b, "inactive" pyridine and nicotinic acid speed up the demetalation in the presence of picolinic acid, suggesting that the second order arises from the axial binding of two pyridine molecules, one of which must be picolinic acid. The binding of pyridine- and imidazole-type ligands was confirmed by UV/vis equilibrium measurements and X-ray crystallography. The implications of these mechanistic findings for designing superior Fe-TAML oxidation catalysts and catalyst formulations are discussed using the results of DFT calculations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.