Abstract. Microfluidic biochips are biochemical laboratories on the microscale that are used for genotyping and sequencing in genomics, protein profiling in proteomics, and cytometry cell analysis. There are basically two classes of such biochips: active devices, where the solute transport on a network of channels on the chip surface is realized by external forces, and passive chips, where this is done using a specific design of the geometry of the channel network. Among the active biochips, current interest focuses on devices whose operational principle is based on piezoelectrically driven surface acoustic waves generated by interdigital transducers placed on the chip surface.In this paper, we are concerned with the numerical simulation of such piezoelectrically agitated surface acoustic waves relying on a mathematical model that describes the coupling of the underlying piezoelectric and elastomechanical phenomena. Since the interdigital transducers usually operate at a fixed frequency, we focus on the time-harmonic case. Its variational formulation gives rise to a generalized saddle point problem for which a Fredholm alternative is shown to hold true.The discretization of time-harmonic surface acoustic wave equations is taken care of by continuous, piecewise polynomial finite elements with respect to a nested hierarchy of simplicial triangulations of the computational domain. The resulting algebraic saddle point problems are solved by block-diagonally preconditioned iterative solvers with preconditioners of BPX-type. Numerical results are given both for a test problem documenting the performance of the iterative solution process and for a realistic surface acoustic wave device illustrating the properties of surface acoustic wave propagation on piezoelectric materials.
Summary. Biochips, of the microarray type, are fast becoming the default tool for combinatorial chemical and biological analysis in environmental and medical studies. Programmable biochips are miniaturized biochemical labs that are physically and/or electronically controllable. The technology combines digital photolithography, microfluidics and chemistry. The precise positioning of the samples (e.g., DNA solutes or proteins) on the surface of the chip in pico liter to nano liter volumes can be done either by means of external forces (active devices) or by specific geometric patterns (passive devices). The active devices which will be considered here are nano liter fluidic biochips where the core of the technology are nano pumps featuring surface acoustic waves generated by electric pulses of high frequency. These waves propagate like a miniaturized earthquake, enter the fluid filled channels on top of the chip and cause an acoustic streaming in the fluid which provides the transport of the samples. The mathematical model represents a multiphysics problem consisting of the piezoelectric equations coupled with multiscale compressible Navier-Stokes equations that have to be treated by an appropriate homogenization approach. We discuss the modeling approach and present algorithmic tools for numerical simulations as well as visualizations of simulation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.