A new high-resolution regional climate change ensemble has been established for Europe within the World Climate Research Program Coordinated Regional Downscaling Experiment (EURO-CORDEX) initiative. The first set of simulations with a horizontal resolution of 12.5 km was completed for the new emission scenarios RCP4.5 and RCP8.5 with more simulations expected to follow. The aim of this paper is to present this data set to the different communities active in regional climate modelling, impact assessment and adaptation. The EURO-CORDEX ensemble results have been compared to the SRES A1B simulation results achieved within the ENSEMBLES project. The large-scale patterns of changes in mean temperature and precipitation are similar in all three scenarios, but they differ in regional details, which can partly be related to the higher resolution in EURO-CORDEX. The results strengthen those obtained in ENSEMBLES, but need further investigations. The analysis of impact indices shows that for RCP8.5, there is a substantially larger change projected for temperature-based indices than for RCP4.5. The difference is less pronounced for precipitation-based indices. Two effects of the increased resolution can be regarded as an added value of regional climate simulations. Regional climate model simulations provide higher daily precipitation intensities, which are completely missing in the global climate model simulations, and they provide a significantly different climate change of daily precipitation intensities resulting in a smoother shift from weak to moderate and high intensities.
Abstract. EURO-CORDEX is an international climate downscaling initiative that aims to provide high-resolution climate scenarios for Europe. Here an evaluation of the ERAInterim-driven EURO-CORDEX regional climate model (RCM) ensemble is presented. The study documents the performance of the individual models in representing the basic spatiotemporal patterns of the European climate for the period 1989-2008. Model evaluation focuses on near-surface air temperature and precipitation, and uses the E-OBS data set as observational reference. The ensemble consists of 17 simulations carried out by seven different models at grid resolutions of 12 km (nine experiments) and 50 km (eight experiments). Several performance metrics computed from monthly and seasonal mean values are used to assess model performance over eight subdomains of the European continent. Results are compared to those for the ERA40-driven ENSEMBLES simulations.The analysis confirms the ability of RCMs to capture the basic features of the European climate, including its variability in space and time. But it also identifies nonnegligible deficiencies of the simulations for selected metrics, regions and seasons. Seasonally and regionally averaged temperature biases are mostly smaller than 1.5 • C, while precipitation biases are typically located in the ±40 % range. Some bias characteristics, such as a predominant cold and wet bias in most seasons and over most parts of Europe and a warm and dry summer bias over southern and southeastern Europe reflect common model biases. For seasonal mean quantities averaged over large European subdomains, no clear benefit of an increased spatial resolution (12 vs. 50 km) can be identified. The bias ranges of the EURO-CORDEX ensemble mostly correspond to those of the ENSEMBLES simulations, but some improvements in model performance can be identified (e.g., a less pronounced southern European warm summer bias). The temperature bias spread across different Published by Copernicus Publications on behalf of the European Geosciences Union. S. Kotlarski et al.: Regional climate modeling on European scalesconfigurations of one individual model can be of a similar magnitude as the spread across different models, demonstrating a strong influence of the specific choices in physical parameterizations and experimental setup on model performance. Based on a number of simply reproducible metrics, the present study quantifies the currently achievable accuracy of RCMs used for regional climate simulations over Europe and provides a quality standard for future model developments.
Reliable estimates of future climate change in the Alps are relevant for large parts of the European society. At the same time, the complex Alpine region poses considerable challenges to climate models, which translate to uncertainties in the climate projections. Against this background, the present study reviews the state-of-knowledge about 21st century climate change in the Alps based on existing literature and additional analyses. In particular, it explicitly considers the reliability and uncertainty of climate projections. Results show that besides Alpine temperatures, also precipitation, global radiation, relative humidity, and closely related impacts like floods, droughts, snow cover, and natural hazards will be affected by global warming. Under the A1B emission scenario, about 0.25 °C warming per decade until the mid of the 21st century and accelerated 0.36 °C warming per decade in the second half of the century is expected. Warming will probably be associated with changes in the seasonality of precipitation, global radiation, and relative humidity, and more intense precipitation extremes and flooding potential in the colder part of the year. The conditions of currently record breaking warm or hot winter or summer seasons, respectively, may become normal at the end of the 21st century, and there is indication for droughts to become more severe in the future. Snow cover is expected to drastically decrease below 1500-2000 m and natural hazards related to glacier and permafrost retreat are expected to become more frequent. Such changes in climatic parameters and related quantities will have considerable impact on ecosystems and society and will challenge their adaptive capabilities.
ABSTRACT:Although regional climate models (RCMs) are powerful tools for describing regional and even smaller scale climate conditions, they still feature severe systematic errors. In order to provide optimized climate scenarios for climate change impact research, this study merges linear and nonlinear empirical-statistical downscaling techniques with bias correction methods and investigates their ability for reducing RCM error characteristics. An ensemble of seven empiricalstatistical downscaling and error correction methods (DECMs) is applied to post-process daily precipitation sums of a high-resolution regional climate hindcast simulation over the Alpine region, their error characteristics are analysed and compared to the raw RCM results.Drastic reductions in error characteristics due to application of DECMs are demonstrated. Direct point-wise methods like quantile mapping and local intensity scaling as well as indirect spatial methods as nonlinear analogue methods yield systematic improvements in median, variance, frequency, intensity and extremes of daily precipitation. Multiple linear regression methods, even if optimized by predictor selection, transformation and randomization, exhibit significant shortcomings for modelling daily precipitation due to their linear framework. Comparing the well-performing methods to each other, quantile mapping shows the best performance, particularly at high quantiles, which is advantageous for applications related to extreme precipitation events. The improvements are obtained regardless of season and region, which indicates the potential transferability of these methods to other regions.
Realizing the error characteristics of regional climate models (RCMs) and the consequent limitations in their direct utilization in climate change impact research, this study analyzes a quantile-based empirical-statistical error correction method (quantile mapping, QM) for RCMs in the context of climate change. In particular the success of QM in mitigating systematic RCM errors, its ability to generate "new extremes" (values outside the calibration range), and its impact on the climate change signal (CCS) are investigated. In a cross-validation framework based on a RCM control simulation over Europe, QM reduces the bias of daily mean, minimum, and maximum temperature, precipitation amount, and derived indices of extremes by about one order of magnitude and strongly improves the shapes of the related frequency distributions. In addition, a simple extrapolation of the error correction function enables QM to reproduce "new extremes" without deterioration and mostly with improvement of the original RCM quality. QM only moderately modifies the CCS of the corrected parameters. The changes are related to trends in the scenarios and magnitude-dependent error characteristics. Additionally, QM has a large impact on CCSs of non-linearly derived indices of extremes, such as threshold indices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.