The advent of affordable consumer grade RGB‐D cameras has brought about a profound advancement of visual scene reconstruction methods. Both computer graphics and computer vision researchers spend significant effort to develop entirely new algorithms to capture comprehensive shape models of static and dynamic scenes with RGB‐D cameras. This led to significant advances of the state of the art along several dimensions. Some methods achieve very high reconstruction detail, despite limited sensor resolution. Others even achieve real‐time performance, yet possibly at lower quality. New concepts were developed to capture scenes at larger spatial and temporal extent. Other recent algorithms flank shape reconstruction with concurrent material and lighting estimation, even in general scenes and unconstrained conditions. In this state‐of‐the‐art report, we analyze these recent developments in RGB‐D scene reconstruction in detail and review essential related work. We explain, compare, and critically analyze the common underlying algorithmic concepts that enabled these recent advancements. Furthermore, we show how algorithms are designed to best exploit the benefits of RGB‐D data while suppressing their often non‐trivial data distortions. In addition, this report identifies and discusses important open research questions and suggests relevant directions for future work.
Recently deep generative models have achieved impressive progress in modeling the distribution of training data. In this work, we present for the first time a generative model for 4D light field patches using variational autoencoders to capture the data distribution of light field patches. We develop a generative model conditioned on the central view of the light field and incorporate this as a prior in an energy minimization framework to address diverse light field reconstruction tasks. While pure learning-based approaches do achieve excellent results on each instance of such a problem, their applicability is limited to the specific observation model they have been trained on. On the contrary, our trained light field generative model can be incorporated as a prior into any model-based optimization approach and therefore extend to diverse reconstruction tasks including light field view synthesis, spatial-angular super resolution and reconstruction from coded projections. Our proposed method demonstrates good reconstruction, with performance approaching end-to-end trained networks, while outperforming traditional model-based approaches on both synthetic and real scenes. Furthermore, we show that our approach enables reliable light field recovery despite distortions in the input.
Partitioning of images is a fundamental image processing task, which is closely related to various problems and applications in computer vision. Due to the hard nature of the underlying problem, existing algorithms are very compute intense. In this work we present a stochastic algorithm to efficiently approximate solutions of the image partitioning problem. Our contributions lie in the novel convex reformulation of the underlying graph cut problem, along with the application of a stochastic solver. These changes allow a faster convergence compared to other graph cut based methods, which is confirmed by our experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.