IntroductionEarlier studies show that a Cochlear Implant (CI), capable of providing intracochlear electrical stimulation independent of environmental sounds, appears to suppress tinnitus at least for minutes. The current main objective is to compare the long-term suppressive effects of looped (i.e. repeated) electrical stimulation (without environmental sound perception) with the standard stimulation pattern of a CI (with environmental sound perception). This could open new possibilities for the development of a “Tinnitus Implant” (TI), an intracochlear pulse generator for the suppression of tinnitus.Materials and MethodsTen patients with single sided deafness suffering from unilateral tinnitus in the deaf ear are fitted with a CI (MED-EL Corporation, Innsbruck, Austria). Stimulation patterns are optimized for each individual patient, after which they are compared using a randomized crossover design, with a follow-up of six months, followed by a 3 month period using the modality of patient’s choice.ResultsResults show that tinnitus can be suppressed with intracochlear electrical stimulation independent of environmental sounds, even long term. No significant difference in tinnitus suppression was found between the standard clinical CI and the TI.ConclusionIt can be concluded that coding of environmental sounds is no requirement for tinnitus suppression with intracochlear electrical stimulation. It is therefore plausible that tinnitus suppression by CI is not solely caused by an attention shift from the tinnitus to environmental sounds. Both the standard clinical CI and the experimental TI are potential treatment options for tinnitus. These findings offer perspectives for a successful clinical application of the TI, possibly even in patients with significant residual hearing.Trial RegistrationTrialRegister.nl NTR3374
Cochlear implantation is a viable treatment option for tinnitus, but the underlying mechanism is yet unclear. Is the tinnitus suppression due to the reversal of the assumed maladaptive neuroplasticity or is it the shift in attention from the tinnitus to environmental sounds and therefore a reduced awareness that reduces tinnitus perception? In this prospective trial, 10 patients with single-sided deafness were fitted with a cochlear implant to investigate the effect of looped intracochlear electrical stimulation (i.e. stimulation that does not encode environmental sounds) on tinnitus, in an effort to find optimal stimulation parameters. Variables under investigation were: amplitude (perceived stimulus loudness), anatomical location inside the cochlea (electrode/electrodes), amplitude modulation, polarity (cathodic/anodic first biphasic stimulation) and stimulation rate. The results suggest that tinnitus can be reduced with looped electrical stimulation, in some cases even with inaudible stimuli. The optimal stimuli for tinnitus suppression appear to be subject specific. However, medium-to-loud stimuli suppress tinnitus significantly better than soft stimuli, which partly can be explained by the masking effect. Although the long-term effects on tinnitus would still have to be investigated and will be described in part II, intracochlear electrical stimulation seems a potential treatment option for tinnitus in this population.
We present an algorithm for the estimation of fundamental frequencies in voiced audio signals. The method is based on an autocorrelation of a signal with a segment of the same signal. During operation, frequency estimates are calculated and the segment is updated whenever a period of the signal is detected. The fast estimation of fundamental frequencies with low error rate and simple implementation is interesting for real-time speech signal processing.
Electrical stimulation by cochlear implant (CI) has been proven to be a viable treatment option for tinnitus in many recent studies. In addition, intracochlear electrical stimulation independent of an acoustic input appears to suppress tinnitus, at least in the short term. We conducted a case study to investigate the long-term effects of both standard CI and intracochlear electrical stimulation independent of an acoustic input on tinnitus in a patient with single-sided deafness and tinnitus. We found no negative effects of intracochlear electrical stimulation independent of an acoustic input on speech perception in noise. Furthermore, the additional use of a standard CI was advantageous for speech discrimination in our patient. We conclude that long-term tinnitus suppression can be achieved via intracochlear electrical stimulation with looped patterns. Our findings in terms of speech discrimination in our patient were consistent with those reported in previous studies.
Cochlear implants are very well established in the rehabilitation of hearing loss and are regarded as the most successful neuroprostheses to date. While a lot of progress has also been made in the neighboring field of specific vestibular implants, some diseases affect the entire inner ear, leading to both hearing and vestibular hypo-or dysfunction. The proximity of the cochlear and vestibular organs suggests a single combined implant as a means to alleviate the associated impairments. While both organs can be stimulated in a similar way with electric pulses applied through implanted electrodes, the typical phase durations needed in the vestibular system seem to be substantially larger than those typically needed in the cochlear system. Therefore, when using sequential stimulation in a combined implant, the pulse stream to the cochlea is interrupted by comparatively large gaps in which vestibular stimulation can occur. We investigate the impact of these gaps in the auditory stream on speech perception. Specifically, we compare a number of stimulation strategies with different gap lengths and distributions and evaluate whether it is feasible to use them without having a noticeable decline in perception and quality of speech. This is a prerequisite for any practicable stimulation strategy of a combined system and can be investigated even in recipients of a normal cochlear implant. Our results show that there is no significant deterioration in speech perception for the different strategies examined in this paper, leaving the strategies as viable candidates for prospective combined cochleo-vestibular implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.