Postoperative pulmonary complications are associated with increased morbidity, length of hospital stay, and mortality after major surgery. Intraoperative lung-protective mechanical ventilation has the potential to reduce the incidence of postoperative pulmonary complications. This review discusses the relevant literature on definition and methods to predict the occurrence of postoperative pulmonary complication, the pathophysiology of ventilator-induced lung injury with emphasis on the noninjured lung, and protective ventilation strategies, including the respective roles of tidal volumes, positive end-expiratory pressure, and recruitment maneuvers. The authors propose an algorithm for protective intraoperative mechanical ventilation based on evidence from recent randomized controlled trials.
Objective Volutrauma and atelectrauma promote ventilator-induced lung injury, but their relative contribution to inflammation in ventilator-induced lung injury is not well established. The aim of this study was to determine the impact of volutrauma and atelectrauma on the distribution of lung inflammation in experimental acute respiratory distress syndrome. Design Laboratory investigation. Setting University-hospital research facility. Subjects Ten pigs (five per group; 34.7–49.9 kg) Interventions Animals were anesthetized and intubated, and saline lung lavage was performed. Lungs were separated with a double-lumen tube. Following lung recruitment and decremental positive end-expiratory pressure trial, animals were randomly assigned to 4 hours of ventilation of the left (ventilator-induced lung injury) lung with tidal volume of approximately 3 mL/kg and 1) high positive end-expiratory pressure set above the level where dynamic compliance increased more than 5% during positive end-expiratory pressure trial (volutrauma); or 2) low positive end-expiratory pressure to achieve driving pressure comparable with volutrauma (atelectrauma). The right (control) lung was kept on continuous positive airway pressure of 20 cm H2O, and Co2 was partially removed extracorporeally. Measurements and Main Results Regional lung aeration, specific [18F]fluorodeoxyglucose uptake rate, and perfusion were assessed using computed and positron emission tomography. Volutrauma yielded higher [18F]fluorodeoxyglucose uptake rate in the ventilated lung compared with atelectrauma (median [interquartile range], 0.017 [0.014–0.025] vs 0.013 min−1 [0.010–0.014min−1]; p < 0.01), mainly in central lung regions. Volutrauma yielded higher [18F]fluorodeoxyglucose uptake rate in ventilator-induced lung injury versus control lung (0.017 [0.014–0.025] vs 0.011 min−1 [0.010–0.016min−1]; p < 0.05), whereas atelectrauma did not. Volutrauma decreased blood fraction at similar perfusion and increased normally as well as hyper-aerated lung compartments and tidal hyperaeration. Atelectrauma yielded higher poorly and nonaerated lung compartments, and tidal recruitment. Driving pressure increased in atelectrauma. Conclusions In this model of acute respiratory distress syndrome, volutrauma promoted higher lung inflammation than atelectrauma at comparable low tidal volume and lower driving pressure, suggesting that static stress and strain are major determinants of ventilator-induced lung injury.
In this model of acute lung injury, pressure support ventilation and noisy pressure support ventilation attenuated pulmonary inflammatory response and improved gas exchange as compared to pressure-controlled ventilation. Noisy pressure support ventilation further improved gas exchange, reduced the inspiratory effort, and attenuated alveolar edema and inflammatory infiltration as compared to conventional pressure support ventilation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.