Restricted Mean Survival Time ( R M S T ) experiences a renaissance and is advocated as a model-free, easy to interpret alternative to proportional hazards regression and hazard rates with implication in causal inference. Estimation of R M S T and associated variance is mainly done by numerical integration of Kaplan–Meier curves. In this paper we briefly review the two main alternatives to the Kaplan–Meier method; analysis based on pseudo-observations, and the flexible parametric survival method. Using computer simulations, we assess the efficacy of the three methods compared to a fully parametric approach where the distribution of survival times is known. Thereafter, the three methods are directly compared without any distributional assumption for the survival data. Generally, flexible parametric survival methods outperform both competitors, however the differences are small.
Restricted Mean Survival Time (RMST), the average time without an event of interest until a specific time point, is a model-free, easy to interpret statistic. The heavy reliance on non-parametric or semi-parametric methods in the survival analysis has drawn criticism, due to the loss of efficacy compared to parametric methods. This assumes that the parametric family used is the true one, otherwise the gain in efficacy might be lost to interpretability problems due to bias. The Focused Information Criterion (FIC) considers the trade-off between bias and variance and offers an objective framework for the selection of the optimal non-parametric or parametric estimator for scalar statistics. Herein, we present the FIC framework for the selection of the RMST estimator with the best bias-variance trade-off. The aim is not to identify the true underling distribution that generated the data, but to identify families of distributions that best approximate this process. Through simulation studies and theoretical reasoning, we highlight the effect of censoring on the performance of FIC. Applicability is illustrated with a real life example. Censoring has a non-linear effect on FICs performance that can be traced back to the asymptotic relative efficiency of the estimators. FICs performance is sample size dependent; however, with censoring percentages common in practical applications FIC selects the true model at a nominal probability (0.843) even with small or moderate sample sizes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.