We have studied the optical properties of mammalian cell suspensions to provide a mechanistic basis for interpreting the optical properties of tissues in vivo. Measurements of the wavelength dependence of the reduced scattering coefficient and measurements of the phase function demonstrated that there is a distribution of scatterer sizes. The volumes of the scatterers are equivalent to those of spheres with diameters in the range between ~0.4 and 2.0 mum. Measurements of isolated organelles indicate that mitochondria and other similarly sized organelles are responsible for scattering at large angles, whereas nuclei are responsible for small-angle scattering. Therefore optical diagnostics are expected to be sensitive to organelle morphology but not directly to the size and shape of the cells.
We analyse the limits of the diffusion approximation to the time-independent equation of radiative transfer for homogeneous and heterogeneous biological media. Analytical calculations and finite-difference simulations based on diffusion theory are compared with discrete-ordinate, finite-difference transport calculations. The influence of the ratio of absorption and transport scattering coefficient (mu(a)/mu'(s)) on the accuracy of the diffusion approximation are quantified and different definitions for the diffusion coefficient, D, are discussed. We also address effects caused by void-like heterogeneities in which absorption and scattering are very small compared with the surrounding medium. Based on results for simple homogeneous and heterogeneous systems, we analyse diffusion and transport calculation of light propagation in the human brain. For these simulations we convert density maps obtained from magnetic resonance imaging (MRI) to optical-parameter maps (mu(a) and mu'(s)) of the brain. We show that diffusion theory fails to describe accurately light propagation in highly absorbing regions, such as haematoma, and void-like spaces, such as the ventricles and the subarachnoid space.
We report on the first three-dimensional, volumetric, tomographic localization of vascular reactivity in the brain. To this end we developed a model-based iterative image reconstruction scheme that employs adjoint differentiation methods to minimize the difference between measured and predicted data. The necessary human-head geometry and optode locations were determined with a photogrammetric method. To illustrate the performance of the technique, the three-dimensional distribution of changes in the concentration of oxyhemoglobin, deoxyhemoglobin, and total hemoglobin during a Valsalva maneuver were visualized. The observed results are consistent with previously reported effects concerning optical responses to hemodynamic perturbations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.