Halide perovskites have emerged recently as promising materials for many applications in photovoltaics and optoelectronics. Recent studies of their optical properties suggest many novel opportunities for a design of advanced nanophotonic devices due to low-cost fabrication, high values of the refractive index, existence of excitons at room temperatures, broadband bandgap tunability, high optical gain and nonlinear response, as well as simplicity of their integration with other types of structures. This paper provides an overview of the recent progress in the study of optical effects originating from nanostructured perovskites, including their potential applications.
The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/adma.202108473.Over the past two decades, research on 2D materials has received much interest. Graphene is the most promising candidate regarding high-frequency applications thus far due to is high carrier mobility. Here, the research about the employment of graphene in micro-and millimeter-wave circuits is reviewed. The review starts with the different methodologies to grow and transfer graphene, before discussing the way graphene-based field-effecttransistors (GFETs) and diodes are built. A review on different approaches for realizing these devices is provided before discussing the employment of both GFETs and graphene diodes in different micro-and millimeter-wave circuits, showing the possibilities but also the limitations of this 2D material for highfrequency applications.
Diodes made of heterostructures of the 2D material graphene and conventional 3D materials are reviewed in this manuscript. Several applications in high frequency electronics and optoelectronics are highlighted. In particular, advantages of metal–insulator–graphene (MIG) diodes over conventional metal–insulator–metal diodes are discussed with respect to relevant figures‐of‐merit. The MIG concept is extended to 1D diodes. Several experimentally implemented radio frequency circuit applications with MIG diodes as active elements are presented. Furthermore, graphene‐silicon Schottky diodes as well as MIG diodes are reviewed in terms of their potential for photodetection. Here, graphene‐based diodes have the potential to outperform conventional photodetectors in several key figures‐of‐merit, such as overall responsivity or dark current levels. Obviously, advantages in some areas may come at the cost of disadvantages in others, so that 2D/3D diodes need to be tailored in application‐specific ways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.