We introduce guanidinium-containing synthetic polymers based on polyguanidino-oxanorbornenes (PGONs) as anion transporters in lipid bilayers that can be activated and inactivated by chemical stimulation. According to fluorogenic anion export experiments with vesicles, PGON transporters are most active in neutral bilayers near their phase transition, with EC50’s in the nanomolar range. Six times higher effective transporter concentrations were measured with aminonaphthalene-1,3,6-trisulfonate than with 5(6)-carboxyfluorescein, demonstrating the importance of anion binding for transport and excluding nonspecific efflux. Negative surface potentials efficiently annihilate transport activity, while inside-negative membrane potentials slightly increase it. These trends demonstrate the functional importance of counterions to hinder the binding of hydrophilic counterions and to minimize the global positive charge of the transporter−counterion complexes. Strong, nonlinear increases in activity with polymer length reveal a significant polymer effect. Overall, the characteristics of PGONs do not match those of similar systems (for example, polyarginine) and hint toward an interesting mode of action, clearly different from nonspecific leakage caused by detergents. The activity of PGONs increases in the presence of amphiphilic anions such as pyrenebutyrate (EC50 = 70 μM), while several other amphiphilic anions tested were inactive. PGONs are efficiently inactivated by numerous hydrophilic anions including ATP (IC50 = 150 μM), ADP (IC50 = 460 μM), heparin (IC50 = 1.0 μM), phytate (IC50 = 0.4 μM), and CB hydrazide (IC50 = 26 μM). The compatibility of this broad responsiveness with multicomponent sensing in complex matrices is discussed and illustrated with lactate sensing in sour milk. The PGON lactate sensor operates together with lactate oxidase as a specific signal generator and CB hydrazide as an amplifier for covalent capture of the pyruvate product as CB hydrazone (IC50 = 1.5 μM).
The objective of this study was to introduce differential sensing techniques to synthetic systems that act, like olfactory receptors, as transporters in lipid bilayer membranes. Routine with most alternative chemosensing ensembles, pattern generation has, quite ironically, remained inaccessible in lipid bilayers because the number of available crossresponsive sensor components has been insufficient. To address this challenge, we here report on the use of cationic hydrazides that can react in situ with hydrophobic analytes to produce cationic amphiphiles which in turn can act as countercation activators for polyanionic transporters in fluorogenic vesicles. To expand the dimension of signals generated by this system, a small collection of small peptides containing a positive charge (guanidinium, ammonium) and one to three reactive hydrazides are prepared. Odorants are used as examples for hydrophobic analytes, perfumes to probe compatibility with complex matrices, and counterion-activated calf-thymus DNA as representative polyion–counterion transport system. Principal component and hierarchical cluster analysis of the obtained multidimensional patterns are shown to differentiate at least 21 analytes in a single score plot, discriminating also closely related structures such as enantiomers, cis–trans isomers, single-atom homologs, as well as all tested perfumes. Inverse detection provides access to analytes as small as acetone. The general nature of the introduced methodology promises to find diverse applications in current topics in biomembrane research
Cucurbit[n]urils (CBn, n = 7, 8) serve as artificial receptors for steroids (21 tested), including the hormones testosterone and estradiol as well as steroidal drugs. Fluorescence displacement titrations and isothermal titration calorimetry (ITC) provided up to nanomolar binding affinities in aqueous solution for these hydrophobic target molecules, exceeding the values of known synthetic receptors. Remarkable binding selectivities, even for homologous steroid pairs, were investigated in detail by NMR, X-ray crystal diffraction, ITC, and quantum chemical calculations. Notably, the CBn•steroid complexes are stable in water and buffers, in artificial gastric acid, and even in blood serum. Numerous applications have been demonstrated, which range from the solubility enhancement of the steroids in the presence of the macrocycles (up to 100 times, for drug delivery) and the principal component analysis of the fluorescence responses of different CBn•reporter dye combinations (for differential sensing of steroids) to the real-time monitoring of chemical conversions of steroids as substrates (for enzyme assays).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.