Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Two non-electrified railway lines, one in Norway and the other in the USA, are analysed for their potential to be electrified with overhead line equipment, batteries, hydrogen or hydrogen-battery hybrid powertrains. The energy requirements are established with single-train simulations, including the altitude profiles of the lines, air and rolling resistances, and locomotive tractive-effort curves. The composition of the freight trains, in terms of the number of locomotives, battery wagons, hydrogen wagons, etc. is also calculated by the same model. The different technologies are compared by the criteria of equivalent annual costs, benefit–cost ratio, payback period and up-front investment, based on the estimated techno-economic parameters for years 2020, 2030 and 2050. The results indicate the potential of batteries and fuel cells to replace diesel on rail lines with low traffic volumes.
The UK has a number of main line railway routes that are not yet electrified. Some of these routes are under active consideration for electrification and the UK Government has recently announced the electrification of the Great Western Main Line (GWML). Railway electrification requires a large capital investment in infrastructure. Areas with limited clearance, such as tunnels and sections through overbridges, are particularly expensive to electrify. In this paper, train performance on the GWML, from London Paddington to Cardiff and vice versa, is modelled for three cases: no electrification; full electrification; and electrification that does not include tunnels, most notably the Severn Tunnel. The modelled trains were: the High Speed Train hauled by pairs of Class 43 diesel-electric locomotives; the nine-car Class 390; and Intercity Express Programme (IEP) trains formed as straight electric or bi-mode multiple units. Bi-mode trains combine electric and diesel traction in the same train. The considered IEP trains included both five-car and eight-car bi-mode options. Journey time, energy consumption and CO 2 emissions were determined in each case. Electrification of the route will result in a reduction in energy consumption, carbon emissions and journey time, with the longest trains offering the greatest benefit. Under normal conditions, all modelled trains were able to complete the journey under discontinuous electrification. However, a small reduction in entry speed into the Severn Tunnel resulted in stalling of the exclusively electric trains. Bi-mode rail vehicles completed the journey in all cases and, as to be expected, also when tunnel entry speed is reduced; journey time, energy consumption and carbon emissions are not majorly impacted compared to exclusively electric operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.