The methodology followed by the Aristotle University (AUTh) team for the vulnerability assessment of reinforced concrete (R/C) and unreinforced masonry (URM) structures is presented. The paper focuses on the derivation of vulnerability (fragility) curves in terms of peak ground acceleration (PGA), as well as spectral displacement (s d ), and also includes the estimation of capacity curves, for several R/C and URM building types. The vulnerability assessment methodology is based on the hybrid approach developed at AUTh, which combines statistical data with appropriately processed (utilising repair cost models) results from nonlinear dynamic or static analyses, that permit extrapolation of statistical data to PGA's and/or spectral displacements for which no data are available. The statistical data used herein are from earthquake-damaged greek buildings. An extensive numerical study is carried out, wherein a large number of building types (representing most of the common typologies in S. Europe) are modelled and analysed. Vulnerability curves for several damage states are then derived using the aforementioned hybrid approach. These curves are subsequently used in combination with the mean spectrum of the Microzonation study of Thessaloniki as the basis for the derivation of new vulnerability curves involving spectral quantities. Pushover curves are derived for all building types, then reduced to standard capacity curves, and can easily be used together with the S d fragility curves as an alternative for developing seismic risk scenarios.
Citation: Mergos, P.E. & Kappos, A.J. (2012). A gradual spread inelasticity model for R/C beam-columns, accounting for flexure, shear and anchorage slip. ENGINEERING STRUCTURES, 44, pp. 94-106. doi: 10.1016STRUCTURES, 44, pp. 94-106. doi: 10. /j.engstruct.2012 This is the submitted version of the paper.This version of the publication may differ from the final published version.
Permanent
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.