Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study.Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.
Blockchain is an emerging digital technology allowing ubiquitous financial transactions among distributed untrusted parties, without the need of intermediaries such as banks. This article examines the impact of blockchain technology in agriculture and food supply chain, presents existing ongoing projects and initiatives, and discusses overall implications, challenges and potential, with a critical view over the maturity of these projects. Our findings indicate that blockchain is a promising technology towards a transparent supply chain of food, with many ongoing initiatives in various food products and food-related issues, but many barriers and challenges still exist, which hinder its wider popularity among farmers and systems. These challenges involve technical aspects, education, policies and regulatory frameworks.
Deep learning (DL) constitutes a modern technique for image processing, with large potential. Having been successfully applied in various areas, it has recently also entered the domain of agriculture. In the current paper, a survey was conducted of research efforts that employ convolutional neural networks (CNN), which constitute a specific class of DL, applied to various agricultural and food production challenges. The paper examines agricultural problems under study, models employed, sources of data used and the overall precision achieved according to the performance metrics used by the authors. Convolutional neural networks are compared with other existing techniques, and the advantages and disadvantages of using CNN in agriculture are listed. Moreover, the future potential of this technique is discussed, together with the authors’ personal experiences after employing CNN to approximate a problem of identifying missing vegetation from a sugar cane plantation in Costa Rica. The overall findings indicate that CNN constitutes a promising technique with high performance in terms of precision and classification accuracy, outperforming existing commonly used image-processing techniques. However, the success of each CNN model is highly dependent on the quality of the data set used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.