Connexive logics aim to capture important logical intuitions, intuitions that can be traced back to antiquity. However, the requirements that are imposed on connexive logic are actually not enough to do justice to these intuitions, as I will argue. I will suggest how these demands should be strengthened.
In this paper, I review the motivation of connexive and strongly connexive logics, and I investigate the question why it is so hard to achieve those properties in a logic with a well motivated semantic theory. My answer is that strong connexivity, and even just weak connexivity, is too stringent a requirement. I introduce the notion of humble connexivity, which in essence is the idea to restrict the connexive requirements to possible antecedents. I show that this restriction can be well motivated, while it still leaves us with a set of requirements that are far from trivial. In fact, formalizing the idea of humble connexivity is not as straightforward as one might expect, and I offer three different proposals. I examine some well known logics to determine whether they are humbly connexive or not, and I end with a more wide-focused view on the logical landscape seen through the lens of humble connexivity.1 Not only is he, by giving me this challenge, responsible for the existence of this paper, he also gave a number of suggestions that were of tremendous help to me in writing this paper; section 6 in particular owes its inclusion and form to these suggestions. Two others have had an equally great impact on this paper, and they happen to be the editors of this volume. The idea of humble connexivity originates in my joint work with Hitoshi Omori. Even if what I'll have to say is probably more opinionated than he would have put it, I would not have been able to form
In this paper, we propose Kripke-style models for the logics of evidence and truth LETJ and LETF. These logics extend, respectively, Nelson’s logic N4 and the logic of first-degree entailment (FDE) with a classicality operator ∘ that recovers classical logic for formulas in its scope. According to the intended interpretation here proposed, these models represent a database that receives information as time passes, and such information can be positive, negative, non-reliable, or reliable, and a formula ∘A means that the information about A, either positive or negative, is reliable. This proposal is in line with the interpretation of N4 and FDE as information-based logics, but adds to the four scenarios expressed by them two new scenarios: reliable (or conclusive) information (i) for the truth and (ii) for the falsity of a given proposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.