In a theory with linear confinement, such as QCD, the masses squared m 2 n,S of mesons with high spin S or high radial excitation number n are expected, from semiclassical arguments, to grow linearly with S and n. We show that this behavior can be reproduced within a putative 5-dimensional theory holographically dual to QCD (AdS/QCD). With the assumption that such a dual theory exists and describes highly excited mesons as well, we show that asymptotically linear m 2 spectrum translates into a strong constraint on the infrared behavior of that theory. In the simplest model which obeys such a constraint we find m 2 n,S ∼ (n + S).
A method for obtaining solutions to the classical equations for scalars plus gravity in five dimensions is applied to some recent suggestions for brane-world phenomenology. The method involves only first order differential equations. It is inspired by gauged supergravity but does not require supersymmetry. Our first application is a full non-linear treatment of a recently studied stabilization mechanism for inter-brane spacing. The spacing is uniquely determined after conventional fine-tuning to achieve zero four-dimensional cosmological constant. If the fine-tuning is imperfect, there are solutions in which the four-dimensional branes are de Sitter or anti-de Sitter spacetimes. Our second application is a construction of smooth domain wall solutions which in a well-defined limit approach any desired array of sharply localized positive-tension branes. As an offshoot of the analysis we suggest a construction of a supergravity c-function for non-supersymmetric four-dimensional renormalization group flows. The equations for fluctuations about an arbitrary scalar-gravity background are also studied. It is shown that all models in which the fifth dimension is effectively compactified contain a massless graviton. The graviton is the constant mode in the fifth dimension. The separated wave equation can be recast into the form of supersymmetric quantum mechanics. The graviton wave-function is then the supersymmetric ground state, and there are no tachyons.Comment: 31 pages, 3 figures, latex. v2: References and an acknowledgement added. v3: Corrected discussion of nonzero cosmological constant. v4: Additional minor corrections, version to appear in Phys. Rev.
We use the AdS/CFT correspondence to determine the rate of energy loss of a heavy quark moving through N = 4 SU (N c ) supersymmetric Yang-Mills plasma at large 't Hooft coupling. Using the dual description of the quark as a classical string ending on a D7-brane, we use a complementary combination of analytic and numerical techniques to determine the friction coefficient as a function of quark mass. Provided strongly coupled N = 4 Yang-Mills plasma is a good model for hot, strongly coupled QCD, our results may be relevant for charm and bottom physics at RHIC.
Coupling fundamental quarks to QCD in the dual string representation corresponds to adding the open string sector. Flavors therefore should be represented by space-time filling D-branes in the dual 5d closed string background. This requires several interesting properties of D-branes in AdS. D-branes have to be able to end in thin air in order to account for massive quarks, which only live in the UV region. They must come in distinct sets, representing the chiral global symmetry, with a bifundamental field playing the role of the chiral condensate. We show that these expectations are born out in several supersymmetric examples. To analyze most of these properties it is not necessary to go beyond the probe limit in which one neglects the backreaction of the flavor D-branes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.