The four established or putative sphingolipid activator proteins derive from a large precursor protein encoded by a single gene. In addition to generating the four sphingolipid activator proteins, the precursor protein is suspected of having functions of its own, as, for example, a lipid binding/transport protein or a neurotrophic factor. The gene also appears to encode the Sertoli cell major sulfated glycoprotein. Sequence similarities have been noted with many other proteins of diverse functions. One patient and a fetus in a single family with a complete defect of this gene due to a mutation in the initiation codon exhibited complex pathological and biochemical abnormalities. Mutant mice homozygous for an inactivated gene of the sphingolipid activator protein precursor exhibit two distinct clinical phenotypes-neonatally fatal and later-onset. The latter develop rapidly progressive neurological signs around 20 days and die by 35-38 days. At 30 days, severe hypomyelination and periodic acid-Schiff-positive materials throughout the nervous system and in abnormal cells in the liver and spleen are the main pathology. Most prominently lactosylceramide, and additionally ceramide, glucosylceramide, galactosylceramide, sulfatide, and globotriaosylceramide are abnormally increased in the brain, liver, kidney, and their catabolism abnormally slow in cultured fibroblasts. Brain gangliosides are generally increased, particularly the monosialogangliosides. The clinical, pathological and biochemical phenotype closely resembles that of the human disease. This model not only allows further clarification of the physiological functions of the four individual sphingolipid activator proteins but also should be useful to explore putative functions of the precursor protein.
BackgroundActinoplanes sp. SE50/110 is known as the wild type producer of the alpha-glucosidase inhibitor acarbose, a potent drug used worldwide in the treatment of type-2 diabetes mellitus. As the incidence of diabetes is rapidly rising worldwide, an ever increasing demand for diabetes drugs, such as acarbose, needs to be anticipated. Consequently, derived Actinoplanes strains with increased acarbose yields are being used in large scale industrial batch fermentation since 1990 and were continuously optimized by conventional mutagenesis and screening experiments. This strategy reached its limits and is generally superseded by modern genetic engineering approaches. As a prerequisite for targeted genetic modifications, the complete genome sequence of the organism has to be known.ResultsHere, we present the complete genome sequence of Actinoplanes sp. SE50/110 [GenBank:CP003170], the first publicly available genome of the genus Actinoplanes, comprising various producers of pharmaceutically and economically important secondary metabolites. The genome features a high mean G + C content of 71.32% and consists of one circular chromosome with a size of 9,239,851 bp hosting 8,270 predicted protein coding sequences. Phylogenetic analysis of the core genome revealed a rather distant relation to other sequenced species of the family Micromonosporaceae whereas Actinoplanes utahensis was found to be the closest species based on 16S rRNA gene sequence comparison. Besides the already published acarbose biosynthetic gene cluster sequence, several new non-ribosomal peptide synthetase-, polyketide synthase- and hybrid-clusters were identified on the Actinoplanes genome. Another key feature of the genome represents the discovery of a functional actinomycete integrative and conjugative element.ConclusionsThe complete genome sequence of Actinoplanes sp. SE50/110 marks an important step towards the rational genetic optimization of the acarbose production. In this regard, the identified actinomycete integrative and conjugative element could play a central role by providing the basis for the development of a genetic transformation system for Actinoplanes sp. SE50/110 and other Actinoplanes spp. Furthermore, the identified non-ribosomal peptide synthetase- and polyketide synthase-clusters potentially encode new antibiotics and/or other bioactive compounds, which might be of pharmacologic interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.