Deformation-induced martensitic transformation as the basis of a hardening process is dependent, among others, on the stress state. In applications such as cryogenic cutting, where a hardened martensitic subsurface can be produced in metastable austenitic steels, different stress states exist. Furthermore, cutting typically occurs at high strain rates greater than 103s−1. In order to gain a deeper insight into the behavior of a metastable austenitic steel (AISI 304) upon cryogenic cutting, the influence of high strain rates under different loading conditions was analyzed. It was observed that higher strain rates lead to a decrease in the α′-martensite content if exposed to tensile loads due to generated adiabatic heat. Furthermore, a lath-like α′-martensite was induced. Under shear stress, no suppression of α′-martensite formation by higher strain rates was found. A lath α′-martensite was formed, too. In the specimens that were subjected exclusively to compressive loading, almost no α′-martensite was present. The martensitic surface generated by cutting experiments showed deformation lines in which α′-martensite was formed in a wave-like shape. As for the shear specimens, more α′-martensite was formed with increasing strain rate, i.e., force. Additionally, magnetic etching proved to be an effective method to verify the transformation of ferromagnetic α′-martensite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.